Topology in Condensed Matter Summary of Lectures

Dr Nicholas Sedlmayr Institute of Physics, UMCS

Contents

1	Useful Notation	2
2	Some Mathematical Background in Topology	2
3	Quantum Phase Transitions, Topological Order, and Long Range Entanglement	3

iff	if and only if
\Rightarrow	if then
\equiv	defined as
	therefore
• • •	because
	end of proof
\mathbb{R}	set of real numbers
\mathbb{C}	set of complex numbers
I	identity matrix
\forall	the universal quantifier, for all
Ξ	the existential quantifier, there exists
\in	is an element of
\subset	is a subset of
U	union of sets
\cap	intersection of sets

1 Useful Notation

2 Some Mathematical Background in Topology

- Let be any set and $\mathcal{T} = \{U_i | i \in I\}$ denote a specific collection of subsets of X. The pair (X, \mathcal{T}) is a topological space if \mathcal{T} satisfies the following requirements:
 - (i) $0, X \in \mathcal{T}$
 - (ii) If J is any subcollection of I the family $\{U_j | j \in J\}$ satisfies $\cup_{k \in K} U_k \in \mathcal{T}$
 - (iii) If K is any finite subcollection of I the family $\{U_k | k \in K\}$ satisfies $\cap_{k \in K} U_k \in \mathcal{T}$

X itself is often called a topological space. The U_i are the open sets and \mathcal{T} gives a topology to X.

- Let X and Y be topological spaces. A map $f: X \to Y$ is continuous if the inverse image of open set in Y is an open set in X.
- Let X_1 and X_2 be topological spaces. A map $f: X_1 \to X_2$ is a homeomorphism if it is continuous and has an inverse $f^{-1}: X_2 \to X_1$ which is also continuous. If there exists a homeomorphism between X_1 and X_2 , X_1 is said to be homeomorphic to X_2 and vice versa. If two topological spaces have different topological spaces then they are not homeomorphic to each other.
- Let X_1 and X_2 be topological spaces. X_1 and X_2 have the same homotopy type if there exists a map $f: X_1 \to X_2$ and a map $g: X_2 \to X_1$.

3 Quantum Phase Transitions, Topological Order, and Long Range Entanglement

• Let H(d) be a local Hamiltonian with d some parameter and $|\psi_0(d)\rangle$ its ground state. We are interested in gapped systems in which all excitations above the ground state have a finite energy in the thermodynamic limit. For a local observable \hat{P} we define its expectation value as

$$P(d) = \langle \psi_0(d) | \hat{P} | \psi_0(d) \rangle$$

We consider a quantum phase transition to occur for H(d) at $d = d_c$ when there is a singularity in P(d) at $d = d_c$. States $|\psi_0(a)\rangle$ and $|\psi_0(b)\rangle$ belong to the same phase if there is a smooth path [a, b] on which no quantum phase transition occurs.

- If a local Hamiltonian H(d) has a gap for all d on the path [a, b] then there is no phase transition along the path.
- If $|\psi_0(a)\rangle$ and $|\psi_0(b)\rangle$ are both gapped and in the same phase, then there is a path [a, b] on which the gap is always non-zero.
- Iff two gapped ground states are in the same phase can they be adiabatically connected by a local unitary evolution:

 $|\psi_0(a)\rangle \sim |\psi_0(b)\rangle$ iff $\exists \tilde{H}(d) : |\psi_0(b)\rangle \mathcal{T}_d e^{-i\int_a^b d\delta \tilde{H}(\delta)} |\psi_0(a)\rangle$

 \mathcal{T}_d is ordering along the contour [a, b] in the *d* parameter space and $\tilde{H}(d)$ is a local Hermitian operator.

- A state has short range order iff it can be transformed to a direct product state via a local unitary transformation. Such states are said to have trivial topological order.
- A state which cannot be transformed into a direct product state via a local unitary transformation is said to have long-range entanglement, i.e. non-trivial topological order. Topological order defines the equivalence classes defined by local unitary evolution.