1. Derive $R=C_{p}-C_{v}$ for an ideal gas by considering changes at constant pressure and constant volume (Mayer's equation).
2. Show that for a quasi-static adiabatic process in a perfect gas, with constant specific heats, that

$$
p V^{\gamma}=\text { const. } \quad \text { where } \quad \gamma=\frac{C_{p}}{C_{V}} .
$$

You will need Mayer's equation.
3. The molar energy of a monatomic gas which obey's van de Waals' equation is given by

$$
E=\frac{3}{2} R T-\frac{a}{V}
$$

where $a$ is a constant and $V$ is the molar volume at temperature $T$. From temperature $T_{1}$ and volume $V_{1}$ the gas is allowed to expand adiabatically into a vacuum os that it occupies a volume $V_{2}$. What is the final temperature of the gas?
4. Two vessels contain the same number $N$ of molecules of the same perfect gas. Initially the two vessels are isolated from each other, the gases being at the same temperature $T$ but at different pressures $p_{1}$ and $p_{2}$. The partition separating the two gases is removed. Find the change of entropy of the system when equilibrium has been re-established, in terms of initial pressures $p_{1}$ and $p_{2}$. Show that this entropy change is non-negative.
5. By examining variations in $E, F, H$ and $G$, derive the four different Maxwell relations for the partial derivatives of $S, p, T$ and $V$.
6. Obtain the partial derivative identity

$$
\left.\frac{\partial S}{\partial T}\right|_{p}=\left.\frac{\partial S}{\partial T}\right|_{V}+\left.\left.\frac{\partial S}{\partial V}\right|_{T} \frac{\partial V}{\partial T}\right|_{p}
$$

7. Obtain the partial derivative identity

$$
\left.\left.\left.\frac{\partial p}{\partial T}\right|_{V} \frac{\partial T}{\partial V}\right|_{p} \frac{\partial V}{\partial p}\right|_{T}=-1
$$

