- 1. Calculate the partition function for a quantum harmonic oscillator with energy levels $E_n = \hbar \omega (n + \frac{1}{2})$.
 - (i) Find the average energy E and entropy S as a function of temperature T.
 - (ii) A simple model of a solid, due to Einstein, treats the atoms vibrating as a set of N harmonic oscillators. Calculate the heat capacity for $K_B T \gg \hbar \omega$ and $T \to 0$. Compare this to the experimentally known results, for $K_B T \gg \hbar \omega$ one finds $C_V = 3Nk_B$ and for $T \to 0$ one finds $C_V \sim T^3$.
- 2. We can find a unified way of thinking about various ensembles. Let's start form the Gibbs formula for entropy:

$$S = -k_B \sum_{n} p(n) \ln p(n) \,.$$

We can find the microcanonical and canonical ensembles by maximising this with respect to different constraints for p(n).

- (i) Find the microcanonical ensemble for p(n) by adding a constraint that $\sum_{n} p(n) = 1$ and only states with energy E have non-zero p(n). (To maximise with this constraint use a Lagrange multiplier.)
- (ii) For the canonical ensemble we must add the constraint that the average energy is fixed $\langle E \rangle = \sum_{n} p(n) E_{n}$.
- (iii) What happens if we add the constraint that the average energy is fixed $\langle E \rangle = \sum_{n} p(n)E_{n}$ and the average particle number is fixed $\langle N \rangle = \sum_{n} p(n)N_{n}$?