UMCS

Nanophotonics Winter 2021/2022

Instructor Information:

Instructor: Dr Nicholas Sedlmayr *Office*: 306 *Email*: sedlmayr@umcs.pl

Course Web Page: See this page.

Course Content: The topics of this course will be:

- Part I:
 - Introduction to light's interaction with matter
 - Derivation of Wave Equation in matter from Maxwell's equations
 - Dielectric properties of insulators, semiconductors and metals (bulk)
 - Light interaction with nanostructures and microstructures (compared with λ)
- Part II:
 - Photonic Crystals
 - Electromagnetic effects in periodic media
 - Light localization, photonic crystal fibers
- Part III:
 - Metal optics (plasmonics) and nanophotonics
 - Light interaction with 0, 1, and 2 dimensional metallic nanostructures Guiding and focusing light to nanoscale
 - Transmission through subwavelength apertures
- Part IV: Metamaterials

Grading: The course grade will be based on participation in the classes and a final oral exam.

Objectives: To have an overview of the different advances in nanophotonics and their applications.

Prerequisites: Basic electromagnetism (Maxwell's equations), calculus.

The following points may be examined:

- Part I:
 - Derivation of Wave Equation in matter from Maxwell's equations
 - Refractive index and Snell's law
 - Dielectric properties (absorption and reflection)
 - Absorption in insulators and semiconductors
 - Relative permittivity for bulk metals
 - Physical process of the interaction of light with nanostructures and microstructures (compared with λ)
- Part II:
 - Photonic Crystals: Definition and eigenvalue equation
 - Superprism, superlens, and negative refraction effects
 - Light localization, photonic crystal fibers advantages and disadvantages
- Part III:
 - Metal optics (plasmonics) and nanophotonics advantages and disadvantages
 - Transmission through subwavelength apertures
 - Dispersion relation for bulk plasmon
 - Dispersion relation for surface plasmon