Create a Excel file which does the following:

1. Has a column with times t in seconds from 0 to 5 s in steps of 0.01 s .
2. Two further columns with vertical velocity and height calculated according to $v=v_{0}-g t$ and $h=$ $-g t^{2} / 2+v_{0} t$ respectively.
3. $v_{0}=10 \mathrm{~ms}^{-1}$ and g should be given in a separate cell. (Physically these are an initial velocity and the acceleration under freefall of an object thrown directly upwards, whose subsequent height at a time t is given by h.)
4. In a further column add randomly generated term $n(t)$ to the height $h_{e}(t)=h(t)+n(t)$ with $-1<$ $n(t)<1$ to mimic uncertainty.
5. Create a plot and fit a line through the points using the formulae $h=a t^{2}+b t+c$, what are a, b, c ?
6. Do this for $g=9.81 \mathrm{~ms}^{-2}$ (its value on Earth) as well as for the values of g on the surface of the moon and the surface of Jupiter.

Useful background materials can be found here.
(http://chem.winthrop.edu/faculty/sebhatu/link_to_webpages/courses/phys201l/Excel_tutorial.pdf)

