Create a Excel file which does the following:

- 1. Has a column with times t in seconds from 0 to 5 s in steps of 0.01 s.
- 2. Two further columns with vertical velocity and height calculated according to $v = v_0 gt$ and $h = -gt^2/2 + v_0t$ respectively.
- 3. $v_0 = 10 \text{ ms}^{-1}$ and g should be given in a separate cell. (Physically these are an initial velocity and the acceleration under freefall of an object thrown directly upwards, whose subsequent height at a time t is given by h.)
- 4. In a further column add randomly generated term n(t) to the height $h_e(t) = h(t) + n(t)$ with -1 < n(t) < 1 to mimic uncertainty.
- 5. Create a plot and fit a line through the points using the formulae $h = at^2 + bt + c$, what are a, b, c?
- 6. Do this for $g = 9.81 \text{ ms}^{-2}$ (its value on Earth) as well as for the values of g on the surface of the moon and the surface of Jupiter.

Useful background materials can be found here.

(http://chem.winthrop.edu/faculty/sebhatu/link_to_webpages/courses/phys2011/Excel_tutorial.pdf)