1. Show that \vec{k}, \vec{E}, and \vec{B} are all perpendicular to each other for our solution to the EM wave equation:

$$
\vec{E}=\vec{E}_{0} \cos \left[\omega t-\vec{k} \cdot \vec{r}+\phi_{0}\right]
$$

Sketch the behaviour of \vec{E} and \vec{B} as a function of position for some value of $\vec{k}, \phi_{0}=0$ and $\omega t=$ $0, \pi / 4, \pi / 2$.
2. Starting from $\nabla \times \vec{E}=-\partial_{t} \vec{B}$ and $\nabla \times \vec{B}=\mu_{0} \vec{J}+\mu_{0} \epsilon_{0} \partial_{t} \vec{E}$ show that

$$
\partial_{t}\left[\frac{\epsilon_{0} E^{2}}{2}+\frac{B^{2}}{2 \mu_{0}}\right]=-\frac{1}{\mu_{0}} \nabla \cdot(\vec{E} \times \vec{B})-\vec{E} \cdot \vec{J} .
$$

By comparing this with the continuity equation $\partial_{t} \rho=-\nabla \cdot \vec{J}+\sigma$ interpret the above equation. $\vec{S}=\vec{E} \times \vec{H}$ is called the Poynting vector.
3. Consider two infinitely large perfectly conducting parallel plates in the $x-z$ plane. One at $y=0$ and one at $y=d$.

- What are the boundary conditions for the electric and magnetic fields on the plates?
- Find a solution to the wave equation for this system for $\vec{k}=(0,0, k)$.
- Find a solution to the wave equation for this system which is made from two waves with $\vec{k}_{1}=$ $k(0, \sin \theta, \cos \theta)$ and $\vec{k}_{2}=k(0,-\sin \theta, \cos \theta)$.
- Which property of the wave equation, and Maxwells equations more generally ensures that the sum of two solutions is still a solution?

4. Show that the energy of a simple dipole \vec{p} in an electric field \vec{E} is $U=-\vec{p} \cdot \vec{E}$.
5. Starting from the potential for a dipole $\vec{p}=p \hat{z}$ find the electric field produced by a dipole. Find a coordinate free representation.
