Let us return to our SSH model which we have previously dealt with, and which we have also seen in the graphene zig-zag edges:

$$H = -t(1+\delta)\sum_{j}\Psi_{j}^{\dagger}\sigma^{x}\Psi_{j} - t(1-\delta)\left[\sum_{j}\Psi_{j+1}^{\dagger}\begin{pmatrix}0&0\\1&0\end{pmatrix}\Psi_{j} + \mathrm{H.c}\right].$$
(1)

For periodic boundary conditions we can make the Fourier transform $\Psi_j = \frac{1}{\sqrt{N}} \sum_k e^{ikj} \Psi_k$ where $k = 2\pi n/N$ with n = 1, 2, ..., N and N the number of unit cells. Then

$$H = \sum_{k} \Psi_{k}^{\dagger} \underbrace{\begin{pmatrix} 0 & \sigma_{k}^{*} \\ \sigma_{k} & 0 \end{pmatrix}}_{\equiv \mathcal{H}_{k}} \Psi_{k}, \qquad (2)$$

where $\sigma_k = -t(1+g) - t(1-g)e^{-ik}$.

- 1. Find the two non-unitary symmetries of this Hamiltonian: $\{S_1, \mathcal{H}_k\}_+ = 0$ and $[S_2, \mathcal{H}_k]_- = 0$. Together these give a unitary symmetry $\{S, \mathcal{H}_k\}_+ = 0$ with $S = S_1 S_2$. What are S_1^2, S_2^2 , and S^2 ?
- 2. A topological invariant can be found by rewriting the Hamiltonian as $\mathcal{H}_k = \vec{d}_k \cdot \vec{\sigma}_k$. What do the symmetries mean for the vector \vec{d}_k . By considering the behaviour of \vec{d}_k for $k: 0 \to 2\pi$ find a topological invariant.
- 3. In one dimension the topological invariant we are interested in is equivalent to the winding number or Zak-Berry phase ν . The Zak-Berry phase for a single negative energy band μ is

$$\nu = \frac{\varphi}{2\pi} = i \int_0^{2\pi} \frac{dk}{2\pi} \langle u_k | \partial_k u_k \rangle , \qquad (3)$$

with the integral taken round the Brillouin zone and $|u_k\rangle$ being the eigenfunction of a negative energy band. This results in a \mathbb{Z} invariant. The number of pairs of topologically protected edge states is then equal to the total winding number for all negative energy bands. Calculate ν .