1. Consider the following one dimensional Hamiltonian:

$$
\hat{H}|\psi\rangle=-J \sum_{j=1}^{N}\left[\left(1+\delta e^{i \pi j}\right) \hat{c}_{j}^{\dagger} \hat{c}_{j+1}+\text { H.c. }\right]|\psi\rangle=\epsilon|\psi\rangle .
$$

This describes a chain of atoms located at sites $j=1,2, \ldots N$. What does the term $c_{j}^{\dagger} c_{j+1}$ mean? We assume that the operators are fermionic $\left\{\hat{c}_{j}, \hat{c}_{l}^{\dagger}\right\}=\delta_{j, l}$ etc, and the chain is periodic so that site $N+1$ is the same as site 1 , i.e. $\hat{c}_{1}=\hat{c}_{N+1}$.
(a) To solve such a Hamiltonian we want to diagonalise it, i.e. we wish to find a Hamiltonian like $\hat{H}=\sum_{k} \hat{\epsilon}_{k} c_{k}^{\dagger} \hat{c}_{k}$. Why does this help and what is ϵ_{k} ?
(b) For this new Hamiltonian to make sense we need that $\left\{\hat{c}_{k}, \hat{c}_{q}^{\dagger}\right\}=\delta_{k, q}$. For the transform

$$
c_{j}=\frac{1}{\sqrt{N}} \sum_{k=1}^{N} e^{i k j} c_{k}
$$

show that this is true.
(c) Find the Hamiltonian in terms of these new operators and diagonalise it.
2. Consider the following one dimensional Hamiltonian:

$$
\hat{H}=\sum_{k \sigma} \xi_{k} \hat{c}_{k \sigma}^{\dagger} \hat{c}_{k \sigma}+\sum_{k}\left[\Delta_{k} \hat{c}_{k \uparrow}^{\dagger} \hat{c}_{-k \downarrow}^{\dagger}+\Delta_{k} \hat{c}_{-k \downarrow} \hat{c}_{k \uparrow}\right] .
$$

This is the BCS Hamiltonian for superconductivity. We can diagonalise this Hamiltonian using a transform like $\hat{f}_{k 0}^{\dagger}=\bar{u}_{k} \hat{c}_{k \uparrow}^{\dagger}-\bar{v}_{k} \hat{c}_{-k \downarrow}$ and $\hat{f}_{k 1}^{\dagger}=\bar{u}_{k} \hat{c}_{-k \downarrow}^{\dagger}+\bar{v}_{k} \hat{c}_{k \uparrow}$.
(a) Show $\hat{f}_{k 0,1}$ obey canonical commutation relations and find the conditions on u and v that allow this.
(b) Diagonalise the Hamiltonian by first inverting these relations for the $\hat{c_{k \sigma}}$ operators. Find expressions for u_{k} and v_{k}.
(c) Write $\hat{H}=\hat{\Psi}_{k}^{\dagger} \mathcal{H}_{k} \hat{\Psi}_{k}$ for a suitable vector of operators $\hat{\Psi}_{k}$ and find the eigenvalues, compare with the answer from before.

