- 1. By considering the two particle wavefunction $\psi(\vec{r}_1, \sigma_1; \vec{r}_2, \sigma_2)$:
 - (a) Show that in 3 dimensions $\psi(\vec{r}_1, \sigma_1; \vec{r}_2, \sigma_2) = \pm \psi(\vec{r}_2, \sigma_2; \vec{r}_1, \sigma_1)$. What happens if space is 2D?
 - (b) If $\psi(\vec{r}_1, \sigma_1; \vec{r}_2, \sigma_2) = -\psi(\vec{r}_2, \sigma_2; \vec{r}_1, \sigma_1)$ and the wavefunction can be factorised into single particle functions $\psi_{1,2}(\vec{r}, \sigma)$ write down $\psi(\vec{r}_1, \sigma_1; \vec{r}_2, \sigma_2)$ in terms of these functions.
- 2. Consider the one dimensional simple harmonic oscillator,

$$\hat{H}\psi(x) = \left[\frac{\hat{p}^2}{2m} + \frac{m\omega^2 x^2}{2}\right]\psi(x) = \epsilon\psi(x)\,,$$

where $\hat{p} = -i\hbar\partial_x$ and which has the eigenenergies $\epsilon_n = \hbar\omega(n+1/2)$ with $n \in \mathbb{W}$.

- (a) Sketch out how this can be solved using an appropriate ansatz for the wavefunction.
- (b) Rewrite the Hamiltonian operator by completing the square on the x^2 and \hat{p}^2 terms. Remember that $[x, \hat{p}] \neq 0!$
- (c) By defining operators $\hat{a} = \sqrt{m\omega/2\hbar}(x+i\hat{p}/m\omega)$ and $\hat{a}^{\dagger} = \sqrt{m\omega/2\hbar}(x-i\hat{p}/m\omega)$ write \hat{H} in terms of these new operators. By comparing this Hamiltonian with the known eigenvalues what must $\hat{a}^{\dagger}\hat{a}|n\rangle$ be?
- (d) What are $[\hat{a}, \hat{a}^{\dagger}]$ and $[\hat{a}, \hat{a}]$?
- (e) What are $\hat{a}|n\rangle$ and $\hat{a}^{\dagger}|n\rangle$?
- (f) If $\hat{a}|0\rangle = 0$ how can we write $|n\rangle$ using \hat{a} , \hat{a}^{\dagger} , and $|0\rangle$? Hint: try and calculate $\hat{a}^{\dagger}\hat{a}\hat{a}^{\dagger}|0\rangle$ and $\hat{a}^{\dagger}\hat{a}\hat{a}^{\dagger}\hat{a}^{\dagger}|0\rangle$.
- (g) How would one make fermionic equivalents of \hat{a} and \hat{a}^{\dagger} ?