1. By considering the two particle wavefunction $\psi\left(\vec{r}_{1}, \sigma_{1} ; \vec{r}_{2}, \sigma_{2}\right)$:
(a) Show that in 3 dimensions $\psi\left(\vec{r}_{1}, \sigma_{1} ; \vec{r}_{2}, \sigma_{2}\right)= \pm \psi\left(\vec{r}_{2}, \sigma_{2} ; \vec{r}_{1}, \sigma_{1}\right)$. What happens if space is 2D?
(b) If $\psi\left(\vec{r}_{1}, \sigma_{1} ; \vec{r}_{2}, \sigma_{2}\right)=-\psi\left(\vec{r}_{2}, \sigma_{2} ; \vec{r}_{1}, \sigma_{1}\right)$ and the wavefunction can be factorised into single particle functions $\psi_{1,2}(\vec{r}, \sigma)$ write down $\psi\left(\vec{r}_{1}, \sigma_{1} ; \vec{r}_{2}, \sigma_{2}\right)$ in terms of these functions.
2. Consider the one dimensional simple harmonic oscillator,

$$
\hat{H} \psi(x)=\left[\frac{\hat{p}^{2}}{2 m}+\frac{m \omega^{2} x^{2}}{2}\right] \psi(x)=\epsilon \psi(x),
$$

where $\hat{p}=-i \hbar \partial_{x}$ and which has the eigenenergies $\epsilon_{n}=\hbar \omega(n+1 / 2)$ with $n \in \mathbb{W}$.
(a) Sketch out how this can be solved using an appropriate ansatz for the wavefunction.
(b) Rewrite the Hamiltonian operator by completing the square on the x^{2} and \hat{p}^{2} terms. Remember that $[x, \hat{p}] \neq 0$!
(c) By defining operators $\hat{a}=\sqrt{m \omega / 2 \hbar}(x+i \hat{p} / m \omega)$ and $\hat{a}^{\dagger}=\sqrt{m \omega / 2 \hbar}(x-i \hat{p} / m \omega)$ write \hat{H} in terms of these new operators. By comparing this Hamiltonian with the known eigenvalues what must $\hat{a}^{\dagger} \hat{a}|n\rangle$ be?
(d) What are $\left[\hat{a}, \hat{a}^{\dagger}\right]$ and $[\hat{a}, \hat{a}]$?
(e) What are $\hat{a}|n\rangle$ and $\hat{a}^{\dagger}|n\rangle$?
(f) If $\hat{a}|0\rangle=0$ how can we write $\mid n>$ using $\hat{a}, \hat{a}^{\dagger}$, and $|0\rangle$? Hint: try and calculate $\hat{a}^{\dagger} \hat{a} \hat{a}^{\dagger}|0\rangle$ and $\hat{a}^{\dagger} \hat{a} \hat{a}^{\dagger} \hat{a}^{\dagger}|0\rangle$.
(g) How would one make fermionic equivalents of \hat{a} and \hat{a}^{\dagger} ?

