1. Show that the Bloch wavefunction

$$
\psi(\mathbf{r}, \mathbf{t})=\frac{\mathbf{1}}{\sqrt{\mathbf{V}}} \mathbf{u}_{\mathbf{k}}(\mathbf{r}) \mathrm{e}^{\mathrm{i}(\mathbf{k} \cdot \mathbf{r}-\omega \mathbf{t})}
$$

where $u_{\mathbf{k}}(\mathbf{r})$ is a periodic function with the period of the lattice is unchanged by a shift

$$
\mathbf{k}^{\prime}=\mathbf{k}+\mathbf{G}_{\mathbf{0}}
$$

where $\mathbf{G}_{\mathbf{0}}=\mathbf{h a} \mathbf{a}^{*}+\mathbf{k} \mathbf{b}^{*}+\mathbf{l} \mathbf{c}^{*}$ is a reciprocal lattice vector.
2. Calculate the ratio k_{F} / k_{m} for metals of valency 1 , for both the fcc and bcc structures, where k_{F} is the free electron Fermi wavenumber and k_{m} is the minimum distance in reciprocal space from the origin to the boundary of the first Brillouin zone.
3. Find the first Brillouin zone of the honeycomb/hexagonal lattice by considering the reciprocal lattice vectors and sketch it.
4. Consider $\mathrm{e}^{\mathrm{i} k x}$ and $\mathrm{e}^{-\mathrm{i} k x}$. What are the only orthogonal linear combinations, $\phi_{1}(x)$ and $\phi_{2}(x)$, of these functions which satisfy

$$
\int \mathrm{d} x \phi_{1}^{*}(x) V(x) \phi_{2}(x)=0
$$

for all k where $V(X)$ is a periodic potential which can be written as

$$
V(x)=-\sum_{n=1}^{\infty} V_{n} \cos \left(\frac{2 \pi n x}{a}\right)
$$

5. To be handed in. Near the boundary of the first Brillouin zone, for a one-dimensional chain of atoms, at $k=\pi / a$, the nearly free electron theory predicts that the most important term in the lattice potential is $V(x) \approx V_{1} \cos [2 \pi x / a]$. The wavefunction is then approximately

$$
\psi(x) \approx \alpha \mathrm{e}^{\mathrm{i} k x}+\beta \mathrm{e}^{\mathrm{i}(k-2 \pi / a) x}
$$

Substitute this wavefunction into Schrödinger's equation:

$$
-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}} \psi(x)+V(x) \psi(x)=\epsilon \psi(x)
$$

To find equations for α and β we can use that $\mathrm{e}^{\mathrm{i} k x}$ and $\mathrm{e}^{\mathrm{i}(k-2 \pi / a) x}$ are orthogonal. Let us do this explicitly. Multiply the result of your substitution of the $\psi(x)$ into Schroödinger's equation by
(a) $\mathrm{e}^{-\mathrm{i} k x}$, and
(b) $\mathrm{e}^{-\mathrm{i}(k-2 \pi / a) x}$.

Then integrate over all space to find two equations for α and β. Solve these equations and show that

$$
\epsilon=\frac{\hbar^{2} k^{2}}{2 m}+\frac{\pi \hbar^{2}}{m a}\left[\frac{\pi}{a}-k \pm \sqrt{\left(\frac{\pi}{a}-k\right)^{2}+\left(\frac{a m V_{1}}{2 \pi \hbar^{2}}\right)^{2}}\right]
$$

is the energy. Show that this agree with our solution near $k=\pi / a$ and $k=0$.
6. Calculate the variation with wavenumber of the electron effective mass m_{e} for the tight binding dispersion relation $\epsilon=B-2 t \cos (k a)$. Show that the value obtained at $k=\pi / a$ agrees with that obtained by expanding to second order in $k-\pi / a$ about $k=\pi / a$.

