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Abstract

This thesis is concerned with two different phenomena, related by the use of similar
techniques. Using Keldysh non-equilibrium field theory we have studied the Coulomb
blockade regime in closed quantum dots and the metamagnetic quantum critical point in
Sr3Ru2O7. In the first of these we have found some previously unknown behaviour of
the tunnelling density of states of the dot at the degeneracy point and its effect on the
conductance. The second consists of analysing phenomenological field theories for the
system.
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Chapter 1

INTRODUCTION

1.1 Structure of the Thesis

This thesis is divided into two sections on two different subjects, though they are united

by the techniques we use to analyse them. The first subject is the tunnelling density

of states and conductance across many electron almost closed quantum dots. First we

present an overview of the area of study which leads to our interest in the problem of the

Coulomb blockade and then give a qualitative explanation of the phenomenon. After this

we explain the necessary theoretical tools and then present our original work in chapter 4.

This consists of analysing the structure of the saddle point solution to correctly account

for the Coulomb blockade and to derive the tunnelling density of states and differential

conductance of the system. The second topic is metamagnetic quantum criticality, an

introduction to which is left to chapter 5 preceding our work on these systems. Here

we are interested in a variation to the phenomenological Hertz-Millis field theory used to

describe these systems. We present some corrections to the outcome of this model and

look at the possibility of how this model may be justified. This model and the quantities

calculated from it are then generalized to the Keldysh technique. Note that for simplicity

we use ~ = kB = 1 throughout.

1.2 The Effect of Interactions and Disorder

Mesoscopics deals with the area in which the electrons phase is coherent over large lengths.

This phase coherence is destroyed by inelastic collisions. This gives us a length scale, the
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Thouless length LTh, over which the electron is coherent. We shall look at this idea

presently. We are interested in systems where LTh ∼ L, the system size. Because of this

property interference effects can become very important. Typically, for the systems we

are interested in, the mean free path between elastic collisions, l, satisfies the following

conditions: l ≫ λF , the Fermi wavelength, and l ≪ L, the system size.

This area has been a rich source of theoretical work since the late seventies, and

advances in fabrication methods and experimental techniques have allowed a wealth of

data to be collected on mesoscopic systems. We shall focus only on a few issues that are

relevant to the work we present in this thesis. The effect of interactions and disorder on

a system will be described. We are interested in its application to the zero bias anomaly

in quantum dots, this then leads to our main focus on the Coulomb blockade.

One of the main contributions of mesoscopics has been the joint role of interaction

and disorder and how this contributes to a break down of the Landau picture of a Fermi

metal. Introducing disorder into a system will break the translational invariance over

some length scale, and hence momentum conservation starts to break down. This means

that the interaction can no longer be taken care of by the rescaling of some parameters,

as in the Landau picture, which relies on momentum being a good quantum number[1].

The perturbative techniques developed calculate the corrections to the free particle

picture caused by disorder and interaction. (In the regime where we have the small

parameters ετ ≪ 1 and (kF l)
−1 ≪ 1. l and τ are, respectively, the mean free path

between elastic collisions and the associated lifetime.)

For a weakly disordered system it is possible to describe processes in terms of scattering

from impurities. The waves which are scattering are the electron Bloch waves of a perfect

crystal structure. But this view neglects to take into account the effects of interaction.

And, as mentioned above, with the addition of disorder to a system neglecting electron-

electron interactions becomes an increasingly invalid assumption. In other words they are

no longer adequately taken into account by the Landau picture of a Fermi metal[2].

Viewing disorder as the scattering of Bloch waves will give a conductivity like σ =

σ0 − Aσ2
0T

n[3], where σ0 is the residual conductivity due to impurities in the sample,

and we are at low temperatures. A and n are positive constants which depend upon the

mechanism for resistance. For example it could be caused by electron-electron collisions
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or scattering from thermally activated phonons. However, even in the weak disorder limit

this model is incorrect, and the correction from disorder to the Drude conductivity must

consider disorder from the beginning.

In the limit of very strong disorder, Anderson discovered that the wavefunctions of

the electrons can become localised[4]. This is when the wavefunctions, due to scattering

processes, are no longer extended across the sample but have some localization length ξ.

If disorder is strong enough then the localization length becomes small enough to spatially

confine electrons. It can be shown that for arbitrarily weak disorder this will always be

the case for one dimension. For two dimensions it is less well known what will occur.

One important concept which is used in connection with this issue is the mobility edge.

The mobility edge is defined as the energy at which states change from being localised

to being extended. If the Fermi energy is in the localised region then there will be no

conduction at zero temperature, σ0 = 0. But extended states will insure there is a residual

conductivity at zero temperature. There is a metal-insulator transition at the mobility

edge as conduction becomes possible when the wavefunctions are sufficiently extended.

Let us consider static (ω = 0) conductivity. From appendix A the expression for the

cooperon contribution to conductivity is given by

σ =
ne2τ

m︸ ︷︷ ︸
σ0

−2e2

π

1

Ld

∑

Q

1

Q2
. (1.1)

(The cooperon will be explained in chapter 2.) σ0 is the Drude conductivity. This shows

the lowest order correction to the Drude conductivity from disorder effects. This sum can

be performed for the different dimensions yielding

σ(L) =





σ0 − e2

π3

(
1
l
− 1

L

)
if d = 3,

σ0 − e2

π2 ln
(
L
l

)
if d = 2,

σ0 − e2

π
(L− l) if d = 1.

(1.2)

The upper and lower cut-offs on the sum over momentum Q are given by the inverse mean

free path, l−1, and system size, L−1, respectively.

Inelastic collisions will occur between electrons. This is the origin of the timescale τin,
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which is the lifetime of an energy eigenstate of the random potential. If this is greater

than the elastic scattering lifetime, τ ≪ τin, then it gives an upper time that electrons

can diffuse for. Correspondingly we have the Thouless length

LTh = (Dτin)
1
2 . (1.3)

This is the distance an electron will diffuse between the inelastic collisions which will cause

dephasing. The diffusion constant is given by D = v2
F τ/d. Hence any scale dependent

localization or interference effect has an upper cut-off of LTh. The effective dimension of

a sample is given by the number of dimensions for which the size of the system is greater

than LTh.

Now if we consider scattering as a temperature dependent mechanism we can write

LTh = aT− p
2 [3]. With arbitrary constants, a and p > 0, depending on the scattering

mechanism. This is from a power law relation τin ∝ T−p. Using this and redefining l =

aT
− p

2
0 a temperature dependent conductivity correction is, for example in two dimensions,

σ(T ) = σ0 +
p

2

e2

π2
ln
( T
T0

)
. (1.4)

This is the so called weak localization correction. The conductivity decreases with de-

creasing T which is the sign of localization occurring. As T decreases LTh increases, hence

the scale over which quantum interference is effective increases. So localization becomes

more evident and the conductivity decreases. The effect of disorder and interactions will

be explained with respect to the zero bias anomaly.

1.3 Quantum Dots

A quantum dot is a system used to confine electrons. They are small enough to be

considered zero dimensional, which in the language described before means they have a

diameter less than LTh. As shall be seen later the signature of such a structure is that

its zero momentum mode is dominant, as might be naively expected. For example a

lateral dot can be created in the two dimensional interface between gallium arsenide and

aluminium gallium arsenide semiconductors. Chromium and gold layers are used to form
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Figure 1.1: A scan of a quantum dot taken from[7]. The point contacts are coupled to
the leads which allow electrons in and out of the dot. The electrons are confined in the
central cavity, the size of which can be altered by varying the gate voltages Vg1 and Vg2.

the necessary patterns for the gates and to apply a potential to form the depleted region

of electrons. See figure 1.1 for a scanning micrograph of a quantum dot. Negative voltages

are then applied to surface gates to move electrons in or out of the dot. For reviews of

the properties of quantum dots see Kouwenhoven and Marcus[5] and Alhassid[6]. They

can typically be from nanometers to micrometers in size and can confine from one to one

thousand electrons. As seen in figure 1.1 this lateral type of quantum dot will be of the

order of micrometers in diameter.

Confining electrons in this small space leads to the quantization of energy levels and

charge. The two phenomena of quantum dots that we are interested in are the manifesta-

tions of the zero bias anomaly and the Coulomb blockade. These two effects refer to open

and closed dots respectively. In an open dot it is easy to tunnel between the dot and the

leads. A closed dot has only weak tunnelling between itself and any leads attached to it.

As the dot is “closed” to the leads, charge becomes quantized inside and the Coulomb

repulsion between electrons in the dot causes the charging energy to manifest itself.

We can write a general model for an isolated quantum dot. The Hamiltonian, with

{i, j, k, l} labelling the states and {α, β} as the spin labels, is

Ĥ =
∑

ij
α

εij f̂
†
iαf̂jα +

1

2

∑

ijkl
αβ

uijklf̂
†
iαf̂

†
jβf̂kβ f̂lα (1.5)

uijkl is the interaction term defined in terms of the electron-electron interaction, V (r),
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and the single particle states of the system, ψi(r). We note that εij is spin independent

as we assume the energy states are spin degenerate. f̂ †
iα creates a particle in this state

and we can also write

uijkl =

∫
drdr′ψ∗

i (r)ψ
∗
j (r

′)V (r − r′)ψk(r
′)ψl(r). (1.6)

We will simplify this Hamiltonian to the version we use. Firstly we take the energy spec-

trum to consist of a randomly spaced set of levels with a mean level spacing δ which is

small (c.f. temperature and all relevant energy scales.) Secondly we simplify the interac-

tion term[8]. In the limit that the dimensionless conductance g = ET/δ ∼
√
N → ∞ it is

possible to neglect all off-diagonal terms in the interaction[9, 10]. The proof of this, how-

ever, is non-trivial and we shall not reproduce it here. (The Thouless energy is ET ∼ vF/L

in the 2-d ballistic limit.) Neglecting off diagonal terms leaves us with only three possible

terms which can contribute. Along with the one we consider below there is a spin inter-

action and a cooper interaction: these are neglected. The spin, or exchange, interaction

is neglected as the mean level spacing is larger than the exchange energy, δ ≫ Es. The

exchange energy is the energy difference between electrons with parallel and anti-parallel

spins[11]. Hence Ĥint = 1
2
EcN̂

2, where N̂ is the total number operator and Ec = e2/2C

is the charging energy of the dot from the total capacitance C. In the terms of equation

(1.6) we can write

Ec ∼
1

2

∫
d2r

L2
V (r) (1.7)

for the charging energy, which trivially recovers the expression in terms of capacitance

when we insert the Coulomb energy into the integral. The Hamiltonian thus becomes

Ĥ − µN̂ =
∑

k

f̂ †
kξkf̂k +

Ec
2
N̂2. (1.8)

We shall use this simplified Hamiltonian to analyse the Coulomb blockade. Though even

this simplified form for the interaction cannot be dealt with perturbatively and we need

to be more careful. The case in which spin becomes important has been investigated

recently by Kisilev and Gefen[12].
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Figure 1.2: The differential conductance versus voltage for Ge1−xAux. Values of x marked
on data. From[17].

1.4 The Zero Bias Anomaly

The zero bias anomaly is the effect that, as the potential (or bias) across the dot is low-

ered, the differential conductance vanishes more quickly than expected. The differential

conductance, G, vanishes as |V | 12 for low temperatures (T < eV )[13], compared with

the Ohmic result: G ∼ constant. For example see figure 1.2. This was first explained

by Altshuler and Aronov[14, 15] by the joint effects of disorder and interaction on the

tunnelling density of states. This effect has been seen experimentally many times, for ex-

ample Rowel[16] and McMillan and Mochel[17]. This effect is explained by the interplay

of disorder and electron-electron interactions. A dip in the differential conductance will

correspond to a gap forming in the single particle (tunnelling) density of states. They are

related at zero temperature by the simple formula δG(V )/G = δν(eV )/ν[13].

We present a qualitative explanation of the zero bias anomaly[18]. We present a proper

calculation of the tunnelling density of states in chapter 3. In this case we are considering

an almost open quantum dot, hence charging effects are neglected and we cannot explain

the zero bias anomaly in terms of charging energy effects. The process can be split into two

separate sections. Firstly an electron must cross the potential barrier, secondly it needs

to spread across the metal (dot). For small bias it is the second term which will dominate,

as it has become easier for the electron to cross the barrier. If the electron crosses the

metal in a shorter time than the metal’s relaxation time then the other electrons can be

said to be approximately stationary. An electrostatic potential is set up across the system

by the tunnelling electron and the hole left behind. Before the next electron can tunnel
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into this classically forbidden region, the charge (of the previous tunnelled electron) must

diffuse across the system, until the electrostatic potential is lower than the bias voltage.

This can take a long time and is what gives rise to the dip in conductivity at zero bias.

This is analogous to the Coulomb blockade where the conductance across the quantum

dot is periodically suppressed. Both the Coulomb blockade and zero bias phenomena are

related by the dominant effect being due to the zero momentum mode of the electron-

electron interaction. We will discuss this in more detail in chapters 3 and 4.

1.5 The Coulomb Blockade

The Coulomb blockade is a phenomenon seen in almost closed quantum dots[6, 10]. In the

dot the conductance is exponentially suppressed due to the charging energy associated

with adding electrons. However, for periodic values of an applied gate voltage the con-

ductance peaks. Historically, attention was first applied to the statistics of the positions

and heights of these peaks[19, 20, 21, 22] and then to the tunnelling density of states

of the quantum dot[23, 24, 25]. We are interested in the tunnelling density of states as

this allows us to look at the connection between the zero bias anomaly and the Coulomb

blockade.

The following is a simple explanation for the phenomenon of the Coulomb blockade.

When the nth electron enters the quantum dot it costs a charging energy to counter the

Coulomb repulsion of EC(n) = n2e2/2C. So the tunnelling of electrons through the dot

will be suppressed unless

EC(n+ 1) − (n+ 1)Vg = EC(n) − nVg. (1.9)

With Vg as the gate voltage across the dot. This is satisfied by the condition Vg =

(n + 1
2
)Ec. The periodic suppression of tunnelling away from the values Vg = (n + 1

2
)Ec

is the Coulomb blockade. We refer to the points at which n and n + 1 electrons in the

dot have the same energy as degeneracy points. At these values it costs nothing to add

an electron and hence there is a finite conductance. The data in figure 1.4 clearly shows

the peaks and suppression of conductance at different gate voltages.
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Figure 1.3: Coulomb Staircase for T/Ec = 0.02 from equation(4.35).

Figure 1.4: Differential conductance G in a quantum dot as a function of the gate voltage
Vg. From[7].

From this analysis we gain the simple picture of the “Coulomb staircase”. As you

change Vg the number of particles on the dot will change by 1 as it passes through the

degeneracy points. See figure 1.3.

The orthodox theory of the Coulomb blockade is due to Shekter and Khulik[19] and

later Averin and Likharev[20]. It considers rate equations for tunnelling through a central

dot weakly coupled to two leads. By considering Fermi’s golden rule we can write an

equation for the current into and out of the dot from the leads[8, 26]. Tunnelling between

the energy levels εn in the lead and ξk in the dot, with amplitude tn leads to a current

9



between the left lead and the dot of

IL = 2πe
∑

kn

|tLn|2δ(ξk + eVL + EN − EN+1 − εn)[PNf(ξk){1 − f(εn)}

−PN+1f(εn){1 − f(ξk)}]. (1.10)

EN is the energy due to electrostatics of the state with N electrons and PN is the proba-

bility of being in this state. We consider the leads to be reservoirs which are consequently

always in equilibrium. Also the relaxation time for electrons which have tunnelled into

the dot is considered to be short so that the distribution function in the dot is also a Fermi

function, f(ε), and we do not consider the relaxation process for the electrons once they

have tunnelled into the dot. Note that as we are interested in the steady state scenario

the current into and out of the dot must be equal. If, in equation (1.10), we integrate

over the energy levels and demand that PN +PN+1 = 1, so that the dot must have either

N or N + 1 electrons then we find[8]:

G =
dI

dV

∣∣∣∣
V=VL−VR=0

= e2ν0
ΓLΓR

ΓL + ΓR

2Ecβ(N0 −N∗
0 )

sinh[2Ecβ(N0 −N∗
0 )]
. (1.11)

The exponentially suppressed nature of the differential conductance is the phenomenon

of the Coulomb blockade. Γα = 2π|tα|2να and N0 − N∗
0 measures the distance from the

degeneracy point where the current is at a peak. This would be altered by shifting a gate

voltage applied to the dot.

Transport through quantum dots[27] can also be calculated from the tunnelling density

of states[28, 29, 30]. We derive the standard formula in section 4.3. We are principally

interested in this approach as we wish to analyse the tunnelling density of states. A

gap in the tunnelling density of states away from the degeneracy point is the origin of the

suppression of conductance (as there are no states available to tunnel into in the dot). The

closing of this gap at the degeneracy point allows electrons to flow through the dot and

produces a finite conductance. As we demonstrate in chapter 4, we find a full description

of the form of the tunnelling density of states. Both at the degeneracy points and in the

valleys. The correct form of the tunnelling density of states at the degeneracy point is

required to retain the correct form of differential conductance in equation (1.11).
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More recent work has focused on extending the description to the scenarios of granular

arrays of dots and almost open quantum dots. Matveev[31] has described a dot strongly

coupled to one bulk lead and calculates the average particle number on the dot with

changing gate voltage. Some residual effect of charging is found. The average particle

number, 〈N〉, periodically oscillates as the gate voltage, ∝ N , is changed:

〈N〉 = N − C|r| sin(2πN). (1.12)

(The reflection amplitude |r| satisfies |r| ≪ 1 in the case of weak reflection, and C is a

constant.) This effect is small however, as the dot is only weakly isolated from the lead.

While it is evidently not possible to measure transport properties such as the conductance

of such a system, it is not a purely theoretical consideration. The effect of such a system

in close proximity to, and hence interacting with, another dot can be measured[32]. The

conductance through this second dot, which can be coupled to two leads, can then be

measured.

This coupled system of the dot and the lead is written entirely in terms of the lead

electrons. This is done by using the fact that the current into the dot and out of the dot

must be equal. This Hamiltonian is then bosonized and solved in perturbation theory

recovering the Coulomb staircase, etc for almost perfect transmission across the barrier

between dot and lead. This can be generalized to the case of two leads connected to

a dot[33] and a granular system[34]. The granular system consists of a string of dots

connected by macroscopic leads.

Kamenev and Gefen[24] relate the Coulomb blockade phenomenon to the zero bias

anomaly. We shall consider the zero bias anomaly in more detail in chapter 3. They

consider the tunnelling density of states using a functional integral Matsubara represen-

tation. While this recovers the suppression of the density of states in the Coulomb valleys

their saddle point approximation misses the information associated with the Coulomb

staircase.

Using the Matsubara technique they derive an expression for the Green’s function.

First a Hubbard-Stratonovich transformation is applied and then a gauge transformation

is used to remove all non-zero Matsubara frequency modes for the Bosonic fields. The

11



zero frequency mode cannot be removed however and is dealt with using a saddle point

approximation.

The zero Matsubara frequency mode we need to deal with is:

∫
dφ0e

−βφ2
0

2Ec
−iφ0N0+Ω0(µ−iφ0)G0

α(τi − τf , µ− iφ0). (1.13)

(N0 is the local potential.) Hence the saddle point approximation is

0 = (µ− µ̄)/Ec +N0 + ∂Ω0(µ̄)/∂µ where (1.14)

µ̄ = µ− iφ0 (1.15)

solves this equation. This is valid for βEc ≪ 1. Ω0 is the free particle potential and

G0(τi − τf ) is the free particle Green’s function. Hence it is possible to write

Gα(τi − τf , µ) = G0
α(τi − τf , µ̄)D(τi − τf) (1.16)

D(τi − τf ) = e
−T

∑
m6=0

Ec
ω2
m

(1−eiωm(τi−τf )
)

(1.17)

From this they get

ν(ε)

ν0

= −1

2

∫
dω

2π

[
tanh[(ε− ω)/2T ] + coth(ω/2T )

]
B(ω) (1.18)

B(ω) = −2ℑDR(ω) =

√
2π√
TEc

(
e−(ω+Ec/2)2/2EcT − e(ω−Ec/2)

2/2EcT

)
(1.19)

which they claim describes the gap in the tunnelling density of states. However this

result is in fact only valid for temperatures T ≫ Ec. We recover this result in the

large temperature regime but for low temperatures, T ≪ Ec the density of states is

different. The gap they see is therefore not the one giving rise to the Coulomb blockade

but some high temperature remnant. From their saddle point approximation given above

and equation (1.16) it is easy to see that the average number of particles is given by

〈N〉 = −∂Ω
∂µ

= N0 +
µ− µ̄

Ec
. (1.20)

It is linear with changing chemical potential rather than exhibiting the “staircase”.
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A more recent work is that of Efetov and Tschersich[35] who correctly describe the

saddle point. They are interested in a general granular system but we shall ignore that

aspect of their work and focus on a single grain. In a similar way to Kamenev and Gefen

they use a Hubbard-Stratonovich transformation and gauge out all but the zero-frequency

Bosonic fields. The important difference is the inclusion of the infinite number of winding

numbers in the Gauge field used. This is directly analogous to the infinite number of

saddle point solutions we use in our formalism.

After the Hubbard-Stratonovich transformation, where N̄ is the local dimensionless

potential, we have the action

S =
1

4Ec

∫
V 2(τ)dτ − iN̄

∫
V (τ)dτ

+

∫
ψ̄τ [∂τ − ξ + iV (τ)]ψτdτ (1.21)

integrated over the fields V , ψ̄ and ψ. The Gauge transformation is

ψ(τ) → ψ(τ)e−iφ̃(τ) (1.22)

which removes the field V (τ). The periodic function φ̃(τ) = φ(τ) + 2πkTτ and k are the

winding numbers. dτ φ̃(τ) = Ṽ (τ) and V (τ) = ρ + 2πTk + Ṽ (τ) with
∫ β
0
Ṽ (τ)dτ = 0.

The field ρ is the zero Matsubara frequency field which cannot be removed by the gauge

transformation. This is evaluated in the same saddle point approximation as Kamenev

and Gefen used in the regime where the mean level spacing δ ≪ T .

The tunnelling density of states is

ν(ε) = ℑ[ν̃(εn)|εn→−iε+δ]

ν̃(εn) = −(π)−1

∫
dτeiεnτ

∑

α

Gα(τ) (1.23)

Evaluating the free particle Green’s function leaves

ν̃(εn) = ν0T

∫
dτ

eiεnτ

sin(πTτ)
〈e−i[φ̃(τ)−φ̃(0)]〉︸ ︷︷ ︸

=Π(τ)

(1.24)
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and we need to evaluate Π(τ). Separating the winding numbers from the Gauge field

allows them to be summed separately in Π(τ). Also averaging over the fields yields

Π(τ) = 〈e−i[φ(τ)−φ(0)]〉φ〈e−2πikτT 〉k. (1.25)

The actions for the averaging are

Sφ =
T

4Ec
Trφnω

2
nφ−n and Sk =

Tπ2

Ec
k2. (1.26)

The average over φ is the same as for the action of Kamenev and Gefen and gives

e−B(τ−τ2T ). The sum over k is performed using the Poisson trick:

∑

N

eiφN =
∑

m

δ(φ− 2πm). (1.27)

The result, with the necessary normalization, is

∑

m

e−βmEcm+2τEcm−Tτ2Ec . (1.28)

These results are placed into the equation for the tunnelling density of states. Then,

performing the τ integral and analytic continuation, we are left with the result

ν(ε)

ν0
=

1

Z

∑

m

e−m
2Ecβ[f(ε+ Ec − 2Ecm) + f(−ε+ Ec + 2Ecm)]. (1.29)

So far their approach does not include a gate voltage as for the granular system it would be

an additional complication. The distribution of the potential across the granular system

would need to be taken into account. However for our purposes, i.e. for a single grain, it

is equivalent to introducing a potential N0 by replacing m→ m+N0. At the degeneracy

point this will give a “half-gap” in the tunnelling density of states of a width ∼ Ec.

We shall show how to derive this in our method in chapter 4. However, away from the

degeneracy point the tunnelling density of states is not correctly described. Whereas we

can correctly describe the tunnelling density of states both at the peaks and the valleys

of the Coulomb blockade.

14



1.6 Summary

In this chapter we have presented an overview of our approach to the phenomena of

the Coulomb blockade. We have presented interaction and interference effects as an

introduction to the zero bias anomaly presented in chapter 3. This effect is unified in its

explanation with the main focus of the first part of this thesis: the Coulomb blockade.

In chapter 4 we shall calculate the tunnelling density of states and conductance for a

blockaded quantum dot. First, however we shall introduce the necessary technical tools

we use throughout this thesis.
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Chapter 2

KELDYSH GREEN’S FUNCTIONS AND

FUNCTIONAL INTEGRALS

Firstly we will introduce the basic ideas and techniques of Green’s functions and their rep-

resentation as functional integrals. We introduce zero temperature and Keldysh nonequi-

librium diagrammatic techniques and derive some basic results which we shall use. These

include disorder averaging and Dyson’s equation as well as the derivation of the polarisa-

tion operator and diffuson. We then introduce Grassman fields, coherent states and the

functional integral representation for Green’s functions.

2.1 Green’s Functions

Green’s functions can be used to calculate many properties of a system and the techniques

involved will be used extensively in this thesis. Here we shall devote ourselves exclusively

to Keldysh Green’s functions and zero temperature Green’s functions. We shall not

discuss Matsubara representation. The zero temperature form is a useful introduction to

the Keldysh form as Keldysh Green’s functions use many of the same ideas. We will also

used the zero temperature technique for comparisons in chapter 6. Before defining and

elucidating the idea of Green’s functions we briefly introduce the different representations

of wavefunctions and operators that can be used in quantum mechanics which shall be

useful here.

There are three representations of the wavefunctions and operators in quantum me-

chanics that we shall consider. They differ in where the time dependence resides: in
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the operators or in the wavefunctions. The Schrodinger representation is where all time

dependence is in the wavefunctions and the operators acting on the system are time in-

dependent. The Heisenberg representation is where, conversely, all the time dependence

is within the operators. It is a trivial operation to pass between these two, using

i
∂Ψ

∂t
= ĤΨ, which formally gives Ψ(t) = e−iĤtΨ(t = t0) (2.1)

and therefore φ̂H(t) = eiĤtφ̂Se
−iĤt, (2.2)

Ĥ is the Hamiltonian of the Schrodinger equation and φ̂ is a general operator. If the

Hamiltonian is time dependent we replace iH̄t by i
∫ t
H̄(t). However more useful for our

purposes than either of these is to separate the time dependence of the interacting and

the free Hamiltonians, H̄ = H̄0 + H̄i. This is done in such a way that the operators

will contain the free Hamiltonian time dependence but not the time dependence of the

interaction.

φ̂I(t) = S−1(t)φ̂HS(t) (2.3)

S(t) = T e−i
∫ t
−∞Hi(t′)dt′ (2.4)

φ̂I(t) = eiĤ0tφ̂Se
−iĤ0t. (2.5)

T is time ordering and is defined as

T a(t1)b(t2) =





a(t1)b(t2) if t1 > t2,

∓b(t2)a(t1) if t1 < t2,

(2.6)

and ∓ is for the fermionic/bosonic case.

2.1.1 Green’s Functions at Zero Temperature

A Green’s function can be thought of, in the simplest way, as the inverse of a differential

operator, at least for the single particle case. But it is possible to write them for more

general many particle and interacting systems. The single particle Green’s function can
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be defined as the solution to

(ε̂− Ĥ0)G(r, t; r′, t′) = [i∂t −
∇2

2m
+ µ]G(r, t; r′, t′) = δ(r − r′)δ(t− t′). (2.7)

By Fourier transforming this differential equation we can find the Green’s function G0 in

frequency-momentum space:

G0(ε,p) = [ε− ξp + iδ sgn(ξp)]−1. (2.8)

ξp = p2/2m−µ is the dispersion measured from the chemical potential µ. Formally limδ→0

is implied.

However this is not the most useful form for more general cases because not all Green’s

functions can be written as the inverse of a differential operator. In general a single particle

Green’s function can be written as

G(x, x′) = −i〈TψH(x)ψ†
H(x′)〉, (2.9)

where x = (r, t). It can be shown that this is the solution to the above differential

equation.

The Green’s function can be written in terms of the so called retarded and advanced

Green’s functions. This is useful due to their simpler analytic properties.

ℜG(ε,p) = ℜGR(ε,p) = ℜGA(ε,p), (2.10)

ℑGR(ε,p) = ℑG(ε,p) sgn(ξp), (2.11)

ℑGA(ε,p) = −ℑG(ε,p) sgn(ξp). (2.12)

For a single particle with a noninteracting Hamiltonian Ĥ0, the retarded and advanced

Green’s function can be written as

GR/A(ε,p) = (ε− ξp ± iδ)−1. (2.13)
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Lastly, rewriting equation (2.9) in the interaction representation gives

G(x, x′) = −i〈TS(∞)ψI(x)ψ
†
I(x

′)〉
〈S(∞)〉 . (2.14)

This is the starting point of the zero temperature diagram technique in which S(∞) is

expanded in a Taylor’s series.

2.2 The Diagrammatic Technique at Zero Tempera-

ture

The Diagram technique has two distinct advantages: one can more easily decide which

contributions are small; a set of diagrams can be summed using Dyson’s equation which

we will introduce later. From equation (2.14) we expand the exponential in the S-matrix,

S(∞):

G(x, x′) =
−i

〈S(∞)〉
∞∑

n=0

(= i)n

n!

n∏

i=1

∫ ∞

−∞
dti

×〈T[ψI(x)ψ
†
I(x

′)Ĥi(t1) . . . Ĥi(tn)]〉. (2.15)

A general (spin independent) two particle interaction can be written a:

Ĥi =
1

2

∫
d4xd4x′ψ†(x)ψ†(x′)V (x− x′)ψ(x′)ψ(x). (2.16)

Where V is defined in terms of the interaction U such that V (x−x′) ≡ δ(t− t′)U(r− r′).

Now we apply Wick’s Theorem[36]. This rewrites the full Green’s function as a sum of

products of Green’s functions and potentials. The first order terms are shown in figure

2.1. As an example, the diagram of figure 2.1(b) is from

−1

2

∫
d4x1d

4x2V (x1 − x2)G
0(x, x1)G

0(x1, x2)G
0(x2, x

′). (2.17)

Simplifications can be made by noticing that the contributions from diagrams (a) and (d)

are identical, similarly for (b) and (e). The diagrams (c) and (f) are known as unconnected
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Figure 2.1: First order terms of expansion of Green’s function with a Coulomb potential.
Solid lines represent the free particle Green’s functions and wavy lines the interaction.
All internal indices are integrated over.

diagrams (for obvious reasons), and it can be shown[37] that they do not contribute to

the full Green’s function. The expansion of S(∞) in the denominator of equation (2.14)

contains only unconnected diagrams and these cancel order by order with those on the

numerator.

Now, contributions to an expansion of a full G can be split into two types, reducible

and non-reducible. The first are those which it is possible to write in terms of sums of

products of simpler contributions, see figure 2.2. Non-reducible diagrams however will

contain some kind of “cross term” such that they can not be reduced to a combination of

simpler terms, for example see figure 2.2(a). Dyson’s equation is a way of writing a sum

of reducible diagrams such that

G(p, ε) = G0 + G0ΣG0 +G0ΣG0ΣG0 + · · ·

= [(G0)−1 − Σ]−1 → 1

ε− ξp − iℑΣ(p, ε)
, (2.18)

which is the sum in figure 2.2(b). The real part of Σ is neglected in this case as (G0)−1

contains µ the chemical potential and the real part can be scaled away into this, from

which energies are being measured. Also note that the above is really a symbolic notation

and matrix multiplication is implied over all indices and arguments. This reduces to an

algebraic expression in the basis in which everything is diagonal. For a translationally

invariant system this will be the momentum basis.
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Figure 2.2: An example of a sum of reducible diagrams which can be written in a Dyson’s
equation form. Diagram (a) is an example of a non-reducible diagram that cannot be
included in the sum. However, if we are dealing with disorder averaging for example, as
below, then this contribution is less important than those being summed. In this case,
as below, the dotted lines refer to the impurity potential contribution 〈V (r)V (r′)〉i of
equation (2.20).

2.2.1 Disorder Averaging

The disorder in media is modeled as a Gaussian distribution of impurity potentials, V (r).

This is the simplest model for averaging over disorder, which consists of

〈. . .〉i =

∫
DV

NV
. . . e−πνdτ

∫
V 2(r)ddr so (2.19)

〈V (r)〉i = 0 and 〈V (r)V (r′)〉i =
δ(r − r′)

2πνdτ
. (2.20)

DV is the integral over all realizations of V . Here τ is some phenomenological constant,

the scattering rate. 〈. . .〉i will refer to impurity averaging throughout. The advantage

of using Gaussian correlated impurities is that the average depends only on the second

moment. Hence, in practise when we wish to average a Green’s function or a correlation

function we expand the part of S which depends on the impurity potential and then per-

form disorder averaging. It is then often possible to ignore some higher order contributions

and sum the remainder.

The impurity averaged Green’s function can be found from the Dyson’s equation given

above. In this case Σ is the lowest order correction from impurity scattering. It is given

by

Σ(x, x′) = 〈V (r)G0(x− x′)V (r′)〉i (2.21)
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and hence we find

〈Gdis(q)〉i =
1

G−1
0 (q) − Σ(q)

(2.22)

=
1

ω − ξq − iℑΣ(q)
(2.23)

=
1

ω − ξq + i 1
2τ

sgn(ω)
(2.24)

as the self energy is

iℑΣ(q) =
i

2πντ
ℑ
∫

ddp

(2π)d
G0(q − p)

= − i

2τ
sgn(ω). (2.25)

This Green’s function is used as the “free electron” propagator in weakly disordered

systems and we shall make use of it in chapter 3.

2.2.2 General Results at Zero Temperature for the Diagram

Technique

The Keldysh technique of diagrammatics relies on many of the same calculations as at

zero temperature. So as an introduction and for later uses various zero temperature

results shall be derived here for disordered metals. These diagrams form the “blocks”

from which the diagrams for impurity averaged contributions are made. Only lowest

order contributions in ωτ and pl are considered (l is the mean free path.)

The most basic useful object, beyond a single disorder averaged free particle G0, is the

combination of retarded and advanced Green’s functions in a simple “bubble”, see figure

2.3(a):

K0(q, ω) =

∫
ddp

(2π)d
GR(p + q, ω)GA(p, 0) = 2πνdτ(1 + iωτ −Dq2τ) (2.26)

using the approximation

∫
ddp

(2π)d
≈ νd

∫ ∞

−εF≈−∞
dξ

∫
dΩ

Sd−1
, (2.27)

where Ω is the solid angle and Sd−1 is the requisite surface area. Essentially we are

assuming that the density of states is constant near the Fermi surface. This diagram can
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Figure 2.3: A simple GR/A bubble diagram is shown in (a). (b) is the impurity averaged
density correlator. We neglect higher order crossing terms such as (c). × denotes impurity
scattering.
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Figure 2.4: A diffuson.

then be used as the basic block in calculating a GRGA density correlator and the diffusive

modes of a disordered system the diffuson and cooperon.

The density correlator, figure 2.3(b) is

K(q, ω) = 〈GR(p + q, ω)GA(p, 0)〉i
= K0 +K0

1

2πνdτ
K0 +K0

1

2πνdτ
K0

1

2πνdτ
K0 + · · ·

=
2πνd

Dq2 − iω
(2.28)

K0 is the simple bubble diagram in figure 2.3(a).

The diffuson, as shown in figure 2.4, is found in the same way as K. From the ladder

diagram given it is simple to see that

D(q, ω) =
1

2πνdτ 2(Dq2 − iω)
. (2.29)

See appendix B for equivalent diagrams of the diffuson and cooperon and the ladder

formulation of the diffuson.

Provided time reversal symmetry holds, the cooperon, given in figure 2.5, is identical
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Figure 2.5: A cooperon.
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Figure 2.6: A ‘full G’ polarisation bubble. The last two diagrams in (c) would only arise
if we were expanding with an interaction potential also (which we are not here). They
are included here as demonstrations of the kind of higher order terms which would be in
the screened Coulomb potential expansion. We only include the terms in (b) and neglect
all terms like those in (c).

to the diffuson, hence

C(q, ω) =
1

2πνdτ 2(Dq2 − iω)
. (2.30)

The polarisation operator, figure 2.6, is the density correlation function of two Green’s

Functions in a disordered medium. It is also important for the screened Coulomb propa-

gator as will be seen. The polarisation operator is defined as

Π(q, ω) = i〈G(p + q, ε+ ω)G(p, ε)〉i
=

Dq2νd
Dq2 − iω

. (2.31)

For the calculation of Π(q, ω), see appendix C. In figure 2.6 the ladder is given by (b),

and the neglected higher order contributions by (c).

Now we also wish to see the effects of disorder on the electron-electron interaction
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and its vertices. This results in screening of the Coulomb interaction. It is trivial to see

that the only event that can happen is given by figure 2.7. Note that while this includes

the effects of particle-hole pairs created by the ‘photon’ scattering from impurities, the

effects of the interaction on the particle-hole pair is neglected, as has already been done

in calculating the density correlation function equation (2.31). Though, distinctive from

high energy physics, this particle-hole pair is created by ‘promoting’ an electron out of

the Fermi sea. Not creating them out of the vacuum, for which the energies are far too

small. From the diagram in figure 2.7 can see V = V0 + V0ΠV which gives

V (q, ω) =
1

1
V0(q)

− Π(q, ω)
. (2.32)

The unscreened interaction is given by[13] (where a is the larger transverse length for the

quasi 1-d example)

V0(q) =





e2 ln 1
q2a2

if quasi-d = 1

2πe2

q
if d = 2

4πe2

q2 if d = 3.

(2.33)

The final correction from impurity averaging scattering events is the correction across

Coulomb vertices. It is calculated in much the same way as the previous quantities. The

Vertex Correction, see figure 2.8, is due to impurity scattering across retarded/advanced

Green’s functions either side of an emitted or absorbed Coulomb propagator:

Γ(q, ω) =
1

(Dq2 − iω)τ
. (2.34)

As with the previous quantities, some higher order scattering events have been neglected.

Note that this will differ due to whether or not it is emission or absorption and direction

of GR/A. GR/Emission/GA given. To change from emission to absorption we switch

ω ↔ −ω. To the switch order of GR and GA we take the complex conjugate. If however,

the process is for example GR → V → GR, there is no correction because of the analytic

properties of GR.
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=

V VΠ

+

Figure 2.7: The Coulomb interaction screened by impurity scattering.

=

V

GR GA

+

Figure 2.8: The vertex correction across GR to GA due to impurity scattering.

2.3 The Keldysh Green’s Function

The nonequilibrium form for a Green’s function we will present was introduced by Keldysh

in 1964[38]. In addition to this work parallel treatments were developed by Martin and

Schwinger[39] and Schwinger[40].

Starting from equation (2.9) for finite temperature in the Heisenberg representation

we have

G(x, x′) = −i〈TψH(x)ψ†
H(x′)〉 = −iTr(ρ0 TψH(x)ψ†

H(x′)), (2.35)

ρ0 = e−βH in equilibrium, the Gibbs distribution. (2.36)

Changing to the interaction representation for ψ and it’s conjugate makes the interaction

−iβ−iβ

t′t′t′

(a)

t

c ckcm

(c)(b)

Figure 2.9: Interaction contours.
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explicit. Note that e−βH also requires changing by

e−βH = e−βH0 T e−
∫ −iβ
0 dt′Hi(t′). (2.37)

For the Keldysh out of equilibrium formulation the non-interacting part of the Hamilto-

nian must also contain a term pushing the system out of equilibrium which will in general

be time dependent (H0 = H0 + H(t)). This will be assumed rather than explicit in the

following calculations. (i.e. H0 should be replaced by H0 for Keldysh). We now transform

equation (2.9) to the interaction representation. We have an integral over the interaction

part of the Hamiltonian with a time contour as in figure 2.9(a).

→ G(x, x′) = − i

Z
〈Tc e

−i
∫
c
dt′′Hi(t′′)︸ ︷︷ ︸
≡Sc

ψH0(x)ψ
†
H0

(x′)〉, (2.38)

and Z ≡ 〈Sc〉 is the partition function.

From equation (2.38) it is possible to rotate the real part of the contour c onto the

pure imaginary axis. Thus giving the Matsubara contour in figure 2.9(b). This is a single

integral from 0 to inverse temperature β in the imaginary time variable defined as τ = −it.
Perturbation theory can then be performed and this leads to the Matsubara formalism[37].

Due to the finite length of the imaginary time integral Fourier transforming to frequency

space gives sums over so called Matsubara frequencies (for bosonic ω = 2nπT and for

fermionic ω = (2n+ 1)πT , chosen for their symmetry and antisymmetry properties).

However we shall use an alternative formalism known as the Keldysh technique. The

benefit of using this technique is that we are not required to specify the equilibrium

distribution function. Hence it can be used for nonequilibrium problems. We shall see why

this is true shortly. (The equilibrium distribution function is specified in the Matsubara

technique due to equation (2.37)) For the Keldysh contour the real part of c is extended

to ±∞ and the imaginary part is neglected giving figure 2.9(c). We are free to extend

the contour backwards in time as the upper and lower branches will cancel exactly. The

imaginary part of the contour describes the initial distribution of the system. At t = −∞
the interactions is switched on adiabatically. The distribution at t = −∞ is not important

as we are interested in what happens after the interaction has been turned on. In the
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equilibrium case it is assumed that the state we are left with after the interactions have

been switched on is the new unique ground state[41]. We also assume the state does

not depend on the switching mechanism. However, out of equilibrium these assumptions

fail. The power of the Keldysh method is that we are not required to specify the state

we end up with. This is because we “unevolve” the state again on the lower contour.

Consequently we can use this formalism to describe nonequilibrium problems.

The function is now given by

G(x, x′) = −i〈Tck SckψH0(x)ψ
†
H0

(x′)〉. (2.39)

The partition function Z = 〈Sck〉 is unity as the upper and lower contours cancel ex-

actly. In order to derive the matrix structure of the Keldysh Green’s functions from here,

equation (2.39) is split into four separate cases depending on if t and t′ are on the upper,

lower or separate contours. Labelling the upper contour of figure 2.9(c) as 1 and the lower

contour as 2, we write Gij. Then i = {1, 2} and j = {1, 2} refer to t and t′ existing on

the upper and lower contour, respectively.

We demonstrated that the single particle Green’s function can be written as

G(x, x′) = −i〈Tck SckψH0(x)ψ
†
H0

(x′)〉. (2.40)

Splitting this into its four possible cases, differing as to whether t, t′ lie on the upper or

lower contours, we can write this as a matrix. With 1 the upper and 2 the lower contour,

and i, j referring to t, t′ respectively, we have

G̃ =


G11 G12

G22 G21


 . (2.41)

Note that any field or interaction introduced into Sck will also get a matrix structure and

tensor vertices will be necessary to show how all of these are to be ‘multiplied’. These are

described further in section 2.3.1. For G12 and G21 the time coordinates are always on

different parts of the contour (upper or lower). This ensures they are always ordered either

forwards (G12) or backwards (G21) along the contour. Hence these terms are equivalent
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to G< and G> respectively[42, 37]. Where G<,>(t, t′) means that t(<,>)t′. The diagonal

elements of G are time ordered and anti-time ordered (anti-time ordered means that they

are ordered backwards along the contour). To summarize, we have

G11(t, t
′) = −i〈TψH0(t)ψ

†
H0

(t′)〉,

G22(t, t
′) = −i〈T̃ψH0(t)ψ

†
H0

(t′)〉,

G12(t, t
′) = G<(t, t′) and G21(t, t

′) = G>(t, t′). (2.42)

T̃ is the anti-time ordering operator. However, not all of the entries of this matrix are

linearly independent and a simpler form can be found by making a rotation in the Keldysh

matrix space.

We will make a rotation to the Larkin-Ovchinnikov basis[43]:

G = L0τ
3G̃L

†
0. (2.43)

L0 = 1√
2
(τ 0 − iτ 2) and the τ ’s are the Pauli matrices. We will then end up with

G =



GR GK

0 GA



 . (2.44)

GR/A are the retarded and advanced Green’s functions and

GR(t, t′) = G11(t, t
′) −G12(t, t

′) = G21(t, t
′) −G22(t, t

′),

GA(t, t′) = G11(t, t
′) −G21(t, t

′) = G12(t, t
′) −G22(t, t

′) and

GK(t, t′) = G21(t, t
′) +G12(t, t

′) = G11(t, t
′) +G22(t, t

′). (2.45)

Near equilibrium we can write[42]

GK(p, ε) = hε(G
R(p, ε) −GA(p, ε)). (2.46)

It is easy to verify this is exact for equilibrium with hε defined as hε = 1 − 2fε (and fε is

the Fermi distribution). More generally the distribution function must be found from the

29



i i

j j

k kγ̃kij γkij

Figure 2.10: Keldysh emission and absorption vertices.

kinetic equation and GK(t, t′) = GR(t, t′′)F(t′′, t′) −F(t, t′′)GA(t′′, t′). Integration over t′′

is implied.

2.3.1 Properties of the Keldysh Matrix Space

The vertices between interactions and the particle Green’s functions introduce an asym-

metry into the structure. The incoming and outgoing interaction vertices are not the

same. This is the price paid for simplifying the matrix structure of G. It is not possible

to perform a simple rotation on the Bosonic Green’s function to give an upper triangular

structure. Hence forcing this to be true has introduced further matrices associated with

the Bosonic part which complicate the vertices. Emission and absorption are no longer

the same, see figure 2.10. γ̃lj′i′ is the emission vertex and γkij is the absorption vertex given

by;

γ1
ij = γ̃2

ij =
1√
2
δij,

γ2
ij = γ̃1

ij =
1√
2
τ 1
ij . (2.47)

(δij is the normal delta function and τ 1
ij is the Pauli matrix).

The rules for constructing the matrix structure of the diagrams, see for example figure

2.11, are relatively straightforward and follow directly from the derivation of the matrix

Green’s function, equation (2.44). Figure 2.11 is representative of

δGin = Gij γ
o
jk(GklVop)γ̃

p
lm︸ ︷︷ ︸

=Σjm

Gmn. (2.48)

We have suppressed the time and space dependence. Note that all of the internal Keldysh

indices are summed over. Interactions have a matrix structure like equation (2.53) and
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Gmn

γojk γ̃plm
i j k l m n

o p

Figure 2.11: An example of the Keldysh structure of a diagram.

the vertices between the interactions and the particles are described by equation (2.47)

and figure 2.11. External potentials are diagonal in the Keldysh matrix structure.

2.3.2 Basic Results of the Keldysh Technique

The following are some of the basic “blocks” used when constructing diagrams, which is

done analogously to the zero temperature case. The Polarisation Operator, see appendix

C, is given by

Π(q, ω) =


ΠR(q, ω) ΠK(q, ω)

0 ΠA(q, ω)


 . (2.49)

Where

ΠR(q, ω) = [ΠA(q, ω)]∗ =
Dq2νd

Dq2 − iω
, (2.50)

ΠK(q, ω) = I(ω)[ΠR(q, ω) − ΠA(q, ω)] and (2.51)

I(ω) =
1

ω

∫
dε(1 − h(ε)h(ε+ ω)). (2.52)

Similarly the screened Coulomb interaction is

V(q, ω) =


V R(q, ω) V K(q, ω)

0 V A(q, ω)


 , (2.53)
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with

V R(q, ω) = [V A(q, ω)]∗ =
1

1
V0

− ΠR(q, ω)
and (2.54)

V K(q, ω) = I(ω)[V R(q, ω) − V A(q, ω)]. (2.55)

I(ω) is defined as in equation (2.52). These results are used in the same way as at

zero temperature with the added complication of the matrix structure. For examples see

appendices C and D.

2.4 Functional Integrals

A functional integral is a path integral defined with the overcomplete set of coherent

states. We need to introduce the idea of a coherent state and, for Fermionic functional

integrals, of Grassmann algebra[36].

2.4.1 Coherent States and Grassmann Algebra

A coherent state is defined as the eigenstate of an annihilation operator. Note that

a creation operator has no eigenstate. Or, strictly speaking, no right eigenstate. For

bosons, an eigenstate satisfies

âα|φ〉 = φα|φ〉. (2.56)

We can write

|φ〉 = e
∑
α φαâ

†
α |0〉. (2.57)

For bosons the eigenvalues are always complex numbers. However, in the case of fermions

these eigenvalues must anticommute to preserve the properties of the fermion annihilation

operators.

For the purpose of defining fermionic coherent states we introduce an anticommuting

algebra of Grassmann numbers. This is a set of numbers {ψα} which obey the anticom-
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mutation relation

{ψα, ψβ} = 0. (2.58)

This means that a Grassmann number has the property that it’s square is zero and hence

any function of a Grassmann number must be linear.

We can define the conjugate of a product of Grassmann numbers as

(ψα1ψα2 . . . ψαn)
∗ = ψ∗

αn . . . ψ
∗
α2
ψ∗
α1
. (2.59)

We also require (ψ∗)∗ = ψ. We can define integration and differentiation:

d

dψ
ψ = 1

∫
dψ1 = 0

∫
dψψ = 1. (2.60)

Note that for a derivative to act it must be anticommuted through all other fields so that

it is adjacent to the field it is acting on.

Using this algebra we can now define a fermionic coherent state:

âα|ψ〉 = ψα|ψ〉 |ψ〉 =
∏

α

(1 − ψαâ
†
α)|0〉. (2.61)

One property of these states we shall require is their overcompleteness[36]

∫ ∏

α

dψ̄αdψαe
−
∑
α ψ̄αψα |ψ〉〈ψ| = 1. (2.62)

A similar relation can be found for the bosonic case. We shall also use the property, for

a general operator Â, that

Tr Â =

∫
DψDψ̄eψ̄ψ〈−ψ|Â|ψ〉 (2.63)

to derive the Green’s function. We have defined Dψ ≡∏α dψα and ψ̄ψ ≡∑α ψ̄αψα.

33



2.4.2 The Functional Integral Green’s Function

We shall derive the expression for a Green’s function in the functional integral represen-

tation. Starting from

G(t, t′) = − i

Z

∑

n

〈n|Tcψ̂tψ†
t′e

−i
∫
c
dt1H(t1)|n〉

= − i

Z

∫
Dψ0Dψ̄0e

ψ̄0ψ0〈−ψ0|Tcψ̂tψ̂†
t′e

−i∑i δiH(ψ̂†
i ,ψ̂i)|ψ0〉 (2.64)

we can define ψ0 = −ψN+1 and split the time contour into N pieces of width δi. We now

insert N completeness relations at these points:

G(t, t′) = − i

Z

∫
DN+1ψDN+1ψ̄eψ̄0ψ0−

∑N
i=1 ψ̄iψi〈ψN+1|e−iδNH[ψ̂†,ψ̂]|ψN〉〈ψN |

. . . e−iδ1H[ψ̂†,ψ̂]|ψ1〉〈ψ1|e−iδ0H[ψ̂†,ψ̂]ψ̂tψ̂
†
t′ |ψ0〉. (2.65)

Here the 0 and i subscripts refer to the different completeness relations inserted, not the

analogue of the label α used in the preceding section. This can be simplified using the

properties of the coherent states to give

G(t, t′) = − i

Z

∫
DN+1ψDN+1ψ̄︸ ︷︷ ︸

→DψDψ̄

eiSψtψ̄t′ where

iS = ψ̄0ψ −
N∑

i=1

ψ̄iψi +
N∑

i=0

{ψ̄i+1ψi − iδiH [ψ̄i+1, ψi]}

=

N∑

i=0

δi

{
ψ̄i+1

ψi − ψi+1

δi
− iH [ψ̄i+1, ψi]

}

→ i

∫

c

dt

{
ψ̄(t)i

dψ(t)

dt
−H [ψ̄(t), ψ(t)]

}
. (2.66)

It should be noted that the continuum expression is strictly symbolic and that the discrete

expression for the action S is the only one with any real meaning.

The partition function is calculated in the same way, yielding

Z =

∫
Dψ̄DψeiS. (2.67)

34



It is trivial to generalise this to the case where there is more than one state for the particle

to carry (and hence there are additional labels on the operators and states.) The states

and operators simply carry extra labels.

2.4.3 Some Basic Results

Consider the matrix M defined by

M =




−1 0 0 . . . aN+1

−a1 1 0 . . . 0

0 −a2 1 . . . 0

. . . . . . . . . . . . . . .

. . . . . . . . −aN 1




. (2.68)

The entries are defined by ai = 1 − iδiφi. i labels the times and φi is the Hamiltonian at

time ti, compare with equation (2.66). Then

−
∫
DψDψ̄e−ψ̄Mψ = − det M = 1 +

N+1∏

i=1

ai and (2.69)

∫
DψDψ̄e−ψ̄Mψψkψ̄l =





−
k+1∏

i=l

ai if k > l

k−1∏

i=1

N+1∏

l

ai if k < l.

(2.70)

Hence, for ai = 1 − iδiϕi ≈ e−iδiϕi , where δi is a time segment, we can write

∫
DψDψ̄e−ψ̄Mψ = 1 + e−i

∫
ϕ(t)dt and (2.71)

∫
DψDψ̄ψ(t)ψ̄(t′)e−ψ̄Mψ =





e−i

∫ t
t′ ϕ(t′′)dt′′ if t > t′

−e−i
∫ t
t0
ϕ(t′′)dt′′−i

∫ tN+1
t′ ϕ(t′′)dt′′

if t < t′.
(2.72)

If we can not write such a simple form for the matrix M we will use the standard result:

∫
DψDψ̄e−ψ̄αMαβψβ = detM. (2.73)

(2.74)
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The labels α and β refer to any additional structure: for example spin or momentum.
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Chapter 3

THE ZERO BIAS ANOMALY

3.1 Perturbation Theory

In this chapter we will present a calculation of the tunnelling density of states for the

zero bias anomaly. This is a generalisation, to the Keldysh method, of previous work by

Kamenev and Gefen[24]. We find the correction to the one particle tunnelling density

of states due to the self energy of the electron-electron interaction and it’s screening

from impurities. This includes the effects of disorder on the vertices and screening of

the Coulomb interaction. As we shall see the zero momentum mode of the interaction

cannot be taken into account in this method for small temperatures. When it is the

most important contribution we shall need to do something beyond perturbation theory.

Dealing with this mode beyond perturbation theory is the task of the following chapter.

Here we shall repeat the calculation of Kamenev and Gefen (though in the Keldysh

formulation) and compare it to the classic Altshuler-Aronov result[13]. This then leads

us to consider the zero momentum mode of the interaction correctly in the next chapter,

where we believe that Kamenev and Gefen have not correctly accounted for it.

The density of states can be written as

νd(ε) = −1

π
ℑ
∫

ddp

(2π)d
GR(p, ε). (3.1)

For a free particle Green’s function, G0, equation (3.1) just returns the usual density

of states for each dimensionality. Expanding G in the interaction strength will give the
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replacemen

(a)

→→

(c)(b)

K0(q) K0(q)

GR(p) GR(p)

GR(p) GR(p)

GR(p) GR(p)GA(p− q)GA(p− q) GA(p− q)

V (q)

V (q) V (q)

Figure 3.1: Diagrams for the Fock contribution to the density of states correction. Figures
(b) and (c) are after disorder averaging. See appendix B for alternative diffuson diagrams.

corrections to the density of states. The first order correction will be

δν1
d(ε) = −1

π
ℑ
∫

ddp

(2π)d
[GR]1(p, ε). (3.2)

The label 1 signifies that it is the first order correction. We shall also average over the

disorder potential and sum all lowest order diagrams this produces.

Starting from a single particle Green’s function with a Coulomb interaction V , the

interaction Hamiltonian has the form[37]

Hint =
1

2

∫
dd+1x1d

d+1x2ψ
†(x1)ψ

†(x2)V (x1 − x2)ψ(x2)ψ(x1). (3.3)

We expand the S-matrix in the interaction representation and keep only the first order

correction in V , see figure 3.1(a). Note that this is before impurity averaging. After im-

purity averaging, the vertices become “dressed” and we have figure 3.1(b). On performing

the momentum integral over p in equation(3.16) this will then be represented by figure

3.1(c). Note that the triangle in (c) is only closed in momentum space, not in frequency

space.

In the interaction representation the Green’s function is, see section 2.1.1,

G(x, x′) = −i〈TS(∞)ψI(x)ψ
†
I(x

′)〉
〈S(∞)〉 . (3.4)

The S-matrix, which we will Taylor expand, is

S(∞) = T e−i
∫∞
−∞Hint(t

′)dt′ . (3.5)
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After Taylor expanding the S-matrix and applying Wick’s theorem[36, 37] we can extract

the first order correction. (First order in the interaction.) There are four contributions

at first order. Two involve the cooperon corrections which we do not consider[13]. The

remaining two are the diffuson corrections. These are referred to as the Fock, or exchange,

correction and the Hartree correction. We will teat the Hartree correction in section 3.1.3.

It transpires that we are able to neglect this. Here we present only the Fock term. The

Fock correction is the term[13]

δG1 = i

∫
ddq

(2π)d
dω

2π
G(P )G(P −Q)V (Q)G(P ). (3.6)

Here G(P ) are unaveraged with respect to the disorder potential, and P and Q are 4-

vectors. Note that V will differ depending on the dimension. The diagram for equation

(3.6) is figure 3.1(a).

In the Keldysh technique[42], see section 2.3, this will become, for the retarded Green’s

function,

δG1
11(P ) = i

∫
ddq

(2π)d
dω

2π
G1i(P )Gjj′(P −Q)Gi′1(P )γkijVkl(Q)γ̃lj′i′ . (3.7)

Now, using the analytic properties of the above functions and their Keldysh structure,

namely G21 = V21 = 0, equation (3.7) can be written as

δG1
11(P ) =

i

2

∫
ddq

(2π)d
dω

2π
[G11(P )G12(P −Q)G11(P )V11(Q)

+G12(P )G22(P −Q)G11(P )V11(Q)]. (3.8)

The analytic properties of the retarded and advanced Green’s functions ensures that,

upon integration, some of the terms in equation (3.7) are zero. So equation (3.2) becomes

δν1
d(ε) = − 1

2π
ℑi
∫

ddp

(2π)d
ddq

(2π)d
dω

2π
V11(Q)[G11(P )G12(P −Q)G11(P ) +

G12(P )G22(P −Q)G11(P )]. (3.9)

Averaging over the disorder potential cannot alter the Keldysh matrix structure and

the result of this process is simple to see from diagrammatics, see figure 3.1. The first term
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in equation (3.9) will reduce to, using analytic properties and G12(Q) = h(ω)(G11(Q) −
G22(Q)),

−h(ε − ω)G11(P )G22(P −Q)G11(P )V11(Q). (3.10)

Performing disorder averaging yields

−h(ε− ω)G11(P )G22(P −Q)G11(P )V11(Q)
(2πνdτ)

2

[2πνdτ 2(Dq2 − iω)]2
(3.11)

→ −h(ε− ω)G11(P )G22(P −Q)G11(P )V11(Q)

τ 2(Dq2 − iω)2
. (3.12)

This includes the diffuson propagators in figure 3.1. Similarly, the second term in equation

(3.9) will give the following after disorder averaging:

h(ε)G11(P )G22(P −Q)G11(P )V11(Q)

τ 2(Dq2 − iω)2
. (3.13)

This ignores higher order terms from crossed impurity lines.

Now, to lowest order the integral over p is trivial to perform and leads to

∫
ddp

(2π)d
G11(P )G22(P −Q)G11(P ) ≈ 2πiνdτ

2. (3.14)

Note that to lowest order G(P −Q) ≈ G(P ) and so the integral over p can be performed

without needing to worry about the convergence of the ω integral. Collating the above

results, the density of states correction becomes

δν1
d(ε)

νd
= ℑ

∫

L−1<|q|<l−1

ddq

(2π)d

∫ 1
τ

− 1
τ

dω

2π

V11(q, ω)

(Dq2 − iω)2
[h(ε) − h(ε− ω)]. (3.15)

This can be rewritten as

δν1
d(ε)

νd
= ℑ

∫

L−1<|q|<l−1

ddq

(2π)d

∫ 1
τ

0

dω

2π

V11(q, ω)

(Dq2 − iω)2
[h(ε+ ω) − h(ε− ω)]. (3.16)

The limits on the integrals are due to the conditions ωτ ≪ 1 and |q|l ≪ 1 with |q| > L−1

(L is the system size). We are interested in the regime described by these approximations.
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3.1.1 Two Dimensions

As there is no angular dependence on q in the integrand we can write

∫
d2q

4π2
→ 1

2π

∫ l−1

L−1

dqq. (3.17)

Furthermore

V R(q, ω) =
2πe2

q − Dκ2q2

Dq2−iω
, (3.18)

where κ2 = 2πe2ν2. (3.19)

The most important contribution comes from the region of integration: |q| ≪ √ ω
D

. Cal-

culating and rearranging the above case yields

δν
(1)
2 (ε) =

1

8π2D

∫ 1
τ

0

dω

ω
ln

ω

Dκ2
2

[h(ε+ ω) − h(ε− ω)]. (3.20)

For the equilibrium case this gives the following usual result[13]:

δν
(1)
2 (ε) =

1

8π2D

∫ 1
τ

0

dω

ω
ln

ω

Dκ2
2

[
tanh

(ω + ε

2T

)
+ tanh

(ω − ε

2T

)]
. (3.21)

So for very low temperatures, T ≪ (ω + ε), there is a cut-off at ω = ε instead of τ−1.

3.1.2 Three Dimensions

For three dimensions the screened Coulomb potential looks like

V R(q, ω) =
4πe2

q2 − Dκ2
3q

2

Dq2−iω

, (3.22)

where κ2
3 = 4πe2ν3. (3.23)

The integral over frequencies now appears to be divergent. However it is not a physical

divergence and can be removed by subtracting a constant from the density of states.
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replacemen

(a)

→→ D(q)D(q)

(c)(b)

GR(p) GR(p) GR(p)

GR(p) GR(p)

GR(p) GA(p− q)

GA(p− q)

GA(p− q)

GRGR

GAGA

V

V

V

Figure 3.2: Diagrams for the Hartree density of states correction. Figures (b) and (c) are
after disorder averaging. See appendix B for alternative diffuson diagrams.

Subtracting a constant to remove the divergence will leave

δν1
3(ε)

ν3
= ℑ

∫

L−1<|q|<l−1

d3q

(2π)3

∫ 1
τ

0

dω

2π
[h(ε+ ω) − h(ε− ω) − 2]

V (q, ω)

Dq2 − iω
. (3.24)

We are interested in the zero dimensional limit of this quantity. This is calculated in the

next section.

3.1.3 The Hartree Term

Now we also wish to calculate the Hartree correction which should be small for long range

potentials such as the Coulomb potential. This is to demonstrate we are justified in

ignoring it. The Hartree correction looks like figure 3.2. It is calculated in a similar way

to the previous Fock contribution. For simplicity the two dimensional case will be done

for the screened Coulomb potential. If a short range potential is specified the answer will

be of a similar order to the Fock case and we are no longer justified in ignoring it.

The Hartree correction from figure 3.2(c) is

δν1
2(ε)

ν2

= ℑ
∫

L−1<|q|<l−1

d2q

(2π)3

∫ 1
τ

0

dω

2π

2V τ [h(ε − ω) − h(ε+ ω)]

πν2(Dq2 − iω)2

≈ V τ

4π3Dν2

∫ ∞

0

dω

ω
[h(ε+ ω) − h(ε− ω)]. (3.25)

For zero temperature, the correction is of order ln(ετ) compared with (ln(ετ))2 for the

Fock term and can therefore clearly be safely ignored.
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3.2 The Tunnelling Density of States

From the three dimensional density of states we will take the L≪ l limit. Hence integra-

tion over the momenta is no longer valid and we use the correct quantized form for the

momentum:

∫
ddq

(2π)d
→ 1

Ld

∑

q

(3.26)

with q =
2π

L
n. (3.27)

Here Ld is the size of the quasi-zero dimensional object, which we shall assume to be

square, and n is a d dimensional vector whose entries are integers.

We need to analyse the term from equation (3.24):

ℑ V (q, ω)

Dq2 − iω
=

4πe2

q2

ω(2Dq2 −Dκ2
3)

[Dq2(Dq2 −Dκ2
3) − ω2]2 + ω2(2Dq2 −Dκ2

3)
2
. (3.28)

For the d → 0 case we can use Dq2 ≈ D|n|/L2 = EThn ≫ ω, as q ≈ L−1. ETh is

the definition Thouless energy. Obviously we must treat n 6= 0 separately. Making this

approximation and focusing on the most divergent term, q ≫ κ3, we arrive at

δν1(ε)

ν
= − 1

L3

∫ 1
τ

0

dω

2π
ω[h(ε+ ω) − h(ε− ω) − 2]

∑

q 6=0

4πe2

D3κ2
3

1

q6
. (3.29)

In terms of the dimensionless conductance, g = νdDL
d−2, and with a0 =

∑
n6=0(2π|n|)−6

we obtain

δν1(ε)

ν
= a0

1

g

(
T

Ec

)2

f
( ε
T

)
, (3.30)

where f(x) =

∫ ∞

0

dy

2π
y
(
2 − h[(x+ y)T ] + h[(x− y)T ]

)
(3.31)

is a dimensionless integral. Substituting the equilibrium distribution function for h(ε) is

then in agreement with the Kamenev and Gefen work. However as we are in a pseudo-zero

dimensional regime we would expect the zero mode to be the most important. Incorpo-

rating this is not trivial however as it is unscreened and the bare Coulomb interaction is
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ill defined for q = 0.

The method proposed to circumnavigate this problem was to introduce by hand a ‘reg-

ularising’ mechanism for the n = 0 mode[24]. At q ≈ L−1 the sample will be regularised

and with a self capacitance C ≈ L we use

Ec ∼
e2

C
(3.32)

as the zero mode interaction. An inelastic relaxation rate, γin, is also introduced into the

diffusons in the Fock term of the density of states correction. Strictly this should always

be there as it ensures the Diffusons have a finite lifetime but it is normally not important.

So for the zero mode contribution we have

δν1(ε)

ν

∣∣∣
n=0

=

∫ ∞

0

dω

2π
[h(ε+ ω) − h(ε− ω) − 2]ℑe

2

C

1

(γin − iω)2
(3.33)

=
e2

C
2γin

∫ ∞

0

dω

2π

ω

(γ2
in + ω2)2

[h(ε+ ω) − h(ε− ω) − 2]. (3.34)

At equilibrium this equation can be found in terms of digamma functions and calculated

in the limit of γin ≪ T [24]:

δν1(ε)

ν

∣∣∣
n=0

= −Ec
4T

sech2

[
ε

2T

]
. (3.35)

This agrees with the Altshuler Aronov result[13] at d = 0[24]. Temperatures below Ec

cause problems however.

3.3 Beyond Perturbation Theory

The zero mode contribution will lead to a singularity in the first order correction to the

tunnelling density of states[24]. So for small enough temperatures, perturbation theory

will no longer be adequate. The zero mode needs to be treated more carefully than

in the preceding calculation. Kamenev and Gefen consider a Green’s function with a

Hamiltonian which contains only the zero mode interaction, i.e. the Coulomb blockade

interaction. This is dealt with in the next chapter.
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Chapter 4

THE DENSITY OF STATES AND

CONDUCTANCE OF A QUANTUM DOT

In this chapter we derive an expression for the Green’s function of an isolated quantum

dot with the universal Hamiltonian in equation (1.8). This is used to find the average

particle number and the tunnelling density of states and their behaviour with changing

chemical potential. We use the Keldysh formalism to calculate these properties. The

analogous component in the Keldysh formalism to the zero frequency bosonic field in the

Matsubara technique can be dealt with in two ways. (This is the component which is

most difficult to treat and requires some care, see section 1.5.) We present them both as

they allow easier interpretation and comparison with previous work. From the tunnelling

density of states it is possible to find the differential conductance through the dot coupled

to two leads (reservoirs) which is then compared with the standard result. We find that

this can only be correctly reproduced with our corrections to the tunnelling density of

states.
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4.1 Functional Integral Form for the Green’s Func-

tion

We want an expression for the single particle Green’s function of an electron. The Hamil-

tonian describing the interacting electrons is, in the grand canonical ensemble,

Ĥ − µN̂ = Ĥ0 − µN̂ +
Ec
2

(N̂ −N0)
2

= Ĥ0 − (µ+ EcN0)N̂ +
Ec
2
N̂2 + constant. (4.1)

The noninteracting part of the Hamiltonian is defined as

Ĥ0 =

∫
drψ̂†(r)ε̂ψ̂(r). (4.2)

N0 is the contribution from the background charge of the dot, which is very large and scales

with the volume. We consider the electrons to be in a random potential and transform

to the basis where

Ĥ0 =
∑

n

ψ̂†
nεnψ̂n. (4.3)

n labels the random distribution of energy levels in the dot. We consider the mean level

spacing of the energy levels to be less than all other relevant energy scales. In a zero

dimensional system all physical properties can then be found in terms of iGk(t, t
′).

We can derive a functional integral expression for the Green’s function defined on the

full interaction contour. We take as our starting point the following expression,

iGn(t, t
′) = Z−1

∑

m

〈m|Tc ψ̂n(t)ψ̂
†
n(t

′)Uc|m〉. (4.4)

We wish to write this as a functional integral. In the usual way a functional integral form

with a general Hamiltonian can be written as

iGn(t, t
′) = Z−1

∫
DψDψ̄ψn(t)ψ̄n(t

′)ei
∫
c
dt(
∑
k ψ̄k(t)i∂tψk(t)−H), (4.5)
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with the Hamiltonian, H , defined in equation (4.1).

If we perform the Hubbard-Stratonovich transformation on the Green’s function, see

appendix E, we find

iGn(t, t
′) =

∫
DφeiS[φ]

∫
DψDψ̄ψn(t)ψ̄n(t

′)eiS[ψ̄,ψ,φ]

∫
DφeiS[φ]

∫
DψeiS[ψ̄,ψ,φ]

where (4.6)

iS[ψ̄, ψ, φ] = i
∑

k

∫

c

dtψ̄k(t)[i∂t − ξk − iφ(t)]ψk(t) and (4.7)

iS[φ] = −i 1

2Ec

∫

c

dtφ2(t) −N0

∫

c

dtφ(t) (4.8)

are the new actions. In order to correctly derive this form it is necessary to include terms

of the order (φiδi)
2, where δi is a time segment, and to ensure the interaction is in the

normal ordered form. This is reviewed in appendix E.

After the Gaussian Fermionic integrals have been calculated we have an expression for

the Green’s function in terms of the bosonic field:

iGn(t, t
′) = sgnc(t, t

′)

∫
DφeiS[φ]e

∫
c
tt′
dt(φ(t)−iξn)∏

k 6=n[1 + e
∫
c dt(φ(t)−iξk)]

∫
DφeiS[φ]

∏
k[1 + e

∫
c dt(φ(t)−iξk)]

. (4.9)

sgnc(t, t
′) is defined upon the interaction contour c. The interaction contour is given by

figure 2.9(a). We have also defined the following contour:

∫

ctt′

dt =





∫ t
t′ dt if t > t′ on the contour c and

∫
c
dt−

∫ t′
t
dt if t < t′ on the contour c.

(4.10)

There are two ways we can deal with the Bosonic integrals. We shall present both as

together they illuminate the interpretation of the result and allow for easier comparison

with the work of Kamenev and Gefen[24]. Part of the Bosonic field can be dealt with

exactly (equivalent to using a gauge transformation to remove it) and the remaining

contribution from the field must be dealt with approximately.

The first approach we present uses the canonical ensemble representation to rewrite

the integrals. If we define θ =
∫
c
dtφ(t) then the Green’s function, equation (4.9), can be
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written as

iGn(t, t
′) = sgnc(t, t

′)

∫
Dφe−

i
2Ec

∫
c φ

2(t)dtZn(θ)e
∫
c
tt′

[φ(t)−iξn]dt

∫
Dφe−

i
2Ec

∫
c
φ2(t)dtZ(θ)

, (4.11)

where

Z(θ) =
∏

k

[
1 + eθ−βξk

]
and (4.12)

Zn(θ) =
∏

k 6=n

[
1 + eθ−βξk

]
. (4.13)

Note that in this case we have chosen to keep N0 in the definition of the chemical potential.

We can express Zn and Z in terms of the canonical ensemble (instead of the grand

canonical ensemble). We define

Z(θ) =
∞∑

N=0

ZNe
(βµ+θ)N , ZN =

∮
dϕ

2π
e−iNϕ

∏

k

[
1 + e−βεk+iϕ

]
, (4.14)

Zn(θ) =
∞∑

N=0

ZN(εn)e
(βµ+θ)N , ZN(εn) =

∮
dϕ

2π
e−iNϕ

∏

k 6=n

[
1 + e−βεk+iϕ

]
. (4.15)

ZN is the canonical partition function for N particles. To show this it is simply necessary

to expand the product and calculate the integral. ZN(εn) is the partition function without

any N -particle states which contain the single particle level εn. More formally we can

write

ZN(εn)

ZN
=

TrN ĉnĉ
†
ne

−βĤ0

TrN e−βĤ0
= 1 − FN (εn) (4.16)

with FN(εn) the distribution function for being in any N -particle state containing εn. As

the charging energy is a constant in the canonical distribution it does not contribute to

this expression.

Substituting the expression for ZN(εn) into the Green’s function we can find equations

(4.17) and (4.18). For a system with a large number of particles the canonical distribution

function can be approximately replaced with the Fermi function, FN (ε−ωN) ≈ f(ε−ωN).

We also use the fact that ZN is a smooth function, on a scale δ/T , and can be cancelled
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from the numerator and denominator.

The resulting expressions for the Green’s functions are:

iG<
n (ε) = −2π

Z

∞∑

N=0

e−βENf(ε− ωN−1)δ(εn − ε+ ωN−1) (4.17)

and

iG>
n (ε) =

2π

Z

∞∑

N=0

e−βEN [1 − f(ε− ωN)]δ(εn − ε+ ωN). (4.18)

The energy levels EN are defined as EN = Ec(N −N0)
2/2−µN . The difference in energy

between consecutive energy levels is given by ωN = EN+1−EN = Ec(N+ 1
2
)−(µ+N0Ec).

The sum over N is explicitly shown to be a sum over N -particle states.

In order to compare where we differ from the calculation of Kamenev and Gefen it is

more convenient to deal with a saddle point approximation in an analogous way to their

method. It is not possible to use the exact same method as we cannot Fourier transform

on the contour c to easily extract the zero frequency contribution of the bosonic field. To

deal with the Bosonic integrals we define θ =
∫
c
dtφ and demand that this quantity is real

(we are free to do this by picking φ(t) to be real on the real time contour and imaginary

on the imaginary time contour). Hence we can write

∫
Dφ

N e−
i

2Ec

∫
c dtφ

2

F

(
φ(t),

∫

c

φ(t)dt

)
=

∫
Dφ

N

∫
dθδ

(
θ −

∫

c

φ(t)dt

)

e−
i

2Ec

∫
c dt{[φ(t)+θ/L]2+[θ/L]2}F (φ(t), θ), (4.19)

with L = −
∫
c
dt = iβ. Now we can make the substitution ˜φ(t) = φ(t) + θ/L. We then

find

∫ ∞

−∞
dθe−

θ2

2Ecβ

∫
Dφ̃δ

(∫

c

φ̃(t)dt

)
e−

i
2Ec

∫
c
dtφ̃2

F (φ̃(t) + θ/L, θ) (4.20)

We have also noted that the condition θ−
∫
c
dtφ(t) = 0 is identical to making

∫
c
dtφ̃(t) = 0.
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Applying this to the Green’s function we can integrate over φ̃ exactly. We have

iGn(t, t
′) =

〈
e
∫
c
tt′
φ̃(t)dt

〉∣∣∣∣∫
c dtφ̃(t)=0

〈
ig(t, t′; ξn − θ/β)

〉

θ

. (4.21)

The free particle Green’s function may be derived in the functional integral representation:

ign(t, t
′) =

sgnc(t, t
′)e

−iξn
∫
c
tt′
dt

1 + e−βξn
. (4.22)

Now the φ̃ averaging is given by

〈
e
∫
c
tt′
φ̃(t)dt

〉∣∣∣∣∫
c dt

˜φ(t)=0

=

∫
Dφ̃

N e−
i

2Ec

∫
c dtφ̃

2(t)e
∫
c
tt′
φ̃(t)dt

δ

(∫

c

φ̃(t)dt

)

= e−
Ect

2

2β
− iEct[sgnc(t)]

2 . (4.23)

This integral was performed in the same way as we removed the “zero-mode” part of the

φ integral originally. We introduce a new variable to be integrated over, like θ, allowing us

to perform the functional integral. By zero-mode we refer, in analogy to a zero Matsubara

frequency mode, to
∫
c
dtφ(t). We are now left with an expression for the Green’s function

only in terms of the zero-mode.

The removal of all parts of the Bosonic field except the zero-mode term can also be

achieved by a gauge transformation. This is what was done by Kamenev and Gefen

originally[24]. The zero-mode term cannot be removed in this way however, for an expla-

nation of why, see appendix F. However it is inconvenient for us to use this method as

we can not Fourier transform on our time contour to trivially isolate this contribution.

The integral over θ will be performed in a saddle point approximation. After integrat-

ing over φ̃ we are left with

iGn(t) = e−
Ect

2

2β
− iEct

2
+iEctθc(t)

∫
dθe−

θ2

2Ecβ
−N0θ+ln(Z(θ))ig(t; ξn − θ/β)

∫
dθe−

θ2

2Ecβ
−N0θ+ln(Z(θ))

(4.24)

where, as before,

Z(θ) =
∏

k

[
1 + eθ−βξk

]
. (4.25)
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The saddle point equation for the integral is therefore

0 =
θ0
βEc

−N0 +
∑

k

f(ξk − θ0/β). (4.26)

Now, as
∑

k ∼ T/δ and N0 are very large we can neglect the first term. δ is the mean

level spacing and is assumed to be smaller than all other energy scales. Then making the

substitution θ0 = −β(µ− µ0) + 2πmi we arrive at

N0 =
∑

k

f(ξk − µ0). (4.27)

Note that there are an infinite number of saddle points and that µ0 is acting like a chemical

potential for a collection of N0 electrons.

We can now find expressions for the various types of Green’s functions. We now

define Z =
∑

N e
−βEN , where the chemical potential in EN = EcN

2/2 − µ̃N is now

µ̃ = µ− µ0 + EcN0. After Fourier transforming:

iG<
n (ε) = −2π

Z
f(ξn + µ− µ0)e

− β
2Ec

(ξn−ε−Ec/2+µ−µ0)2+βµ̃2

2Ec

∞∑

N=0

δ(Ec(N −N0) + ξn − ε−Ec/2) (4.28)

iG>
n (ε) =

2π

Z
[1 − f(ξn + µ− µ0)]e

− β
2Ec

(ξn−ε+Ec/2+µ−µ0)2+βµ̃2

2Ec

∞∑

N=0

δ(Ec(N −N0) + ξn − ε+ Ec/2). (4.29)

Hence we have all the components of the Keldysh Green’s functions using the relations:

iGR
n (t) = θ(t)[iG>

n (t) − iG<
n (t)] iGA

n (t) = −θ(−t)[iG>
n (t) − iG<

n (t)]

iGK
n (t) = iG>

n (t) + iG<
n (t). (4.30)

To compare with the alternative derivation above it is more convenient to express the
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Green’s functions as:

iG<
n (ε) = −2π

Z

∞∑

N=0

e−βENf(ε− ωN−1)δ(εn − ε+ ωN−1) and (4.31)

iG>
n (ε) =

2π

Z

∞∑

N=0

e−βEN [1 − f(ε− ωN)]δ(εn − ε+ ωN) (4.32)

exactly as before by the properties of the delta function and ωN = EN+1 −EN = Ec(N +

1
2
) − µ̃. From now on we redefine µ̃ → µ for ease of representation.

4.2 Results for the Isolated Quantum Dot

4.2.1 The Average Number of Particles

To find the average particle number from the Green’s function we just need to use

〈N̂〉 = 〈 ˆ̄ψ(0)ψ̂(0)〉

= −i
∑

n

Gn(−0). (4.33)

We can use the Green’s function in equation (4.24), substitute it into this expression, and

then use the saddle point solution described above. First we will use the fact that

dZ(θ)

dθ
=
∑

n

1

1 + eβξn−θ
Z(θ) and therefore

〈N〉 =

∫
dθe−

θ2

2Ecβ
−N0θ dZ(θ)

dθ∫
dθe−

θ2

2Ecβ
−N0θZ(θ)

. (4.34)

It is necessary to use this form to ensure our previous saddle point solution is valid. If we

consider the saddle point to
∫
dθe−S(θ)f(θ), it is necessary for f(θ) to be “well-behaved”,

but this is not the case for our general Green’s function. For a “well-behaved” function

we require that it does not increase exponentially. After integrating by parts and using

the saddle point approximation this gives

〈N〉 =
µ̃

Ec
+

2πi

Ecβ

∑
mme

− (2πm)2

2Ecβ
+ i2πmµ̃

Ec

∑
m e

− (2πm)2

2Ecβ
+ i2πmµ̃

Ec

. (4.35)

52



From this we can calculate:

〈N〉 ≈ µ

Ec
in the limit as Ec ≪ T and (4.36)

〈N〉 ≈ µ

Ec
− 4π

T

Ec
e−

T
Ec

2π2

sin(2πµ/Ec) in the limit T . Ec. (4.37)

This second result is the onset of the Coulomb staircase, i.e. at specific values of the

chemical potential (changed by a gate voltage applied to the system) the number of

particles “jumps” by one. Note however that more terms in the sum over m may be

needed, depending on the ratio T/Ec. Figure 1.3 uses T/Ec = 0.02 and includes terms

up to m = 100 terms. There is a trivial way of seeing this effect by looking for a solution

to Hc(N) = Hc(N + 1), i.e. that it costs nothing to add an electron to the quantum dot.

This occurs at values of the chemical potential given by µ = Ec(N + 1
2
).

4.2.2 The Tunnelling Density of States

The density of states is given by the usual formula

ν(ε) =
i

2π

∑

n

[GR
n (ε) −GA

n (ε)]. (4.38)

If ν0 ≈constant it is then simple to see

ν(ε)

ν0
=

1

Z

∑

N

e−βEN [1 − f(ε− ωN) + f(ε− ωN)e−βωN ] (4.39)

EN =
Ec
2

[
N − µ

Ec

]2

(4.40)

ωN = EN+1 −EN = Ec(N + 1/2) − µ. (4.41)

f(ε− ωN) are Fermi distribution functions.

We wish to maximize the coefficients (e−βωN and e−βEN ). It can be seen that the terms

we need to keep are those of order EM0 and EM0+1. (M0 is the maximal term and we can

ignore M0 − 1 as it is exponentially suppressed.) Note, as shall be seen below, M0 shall

be the closest integer to µ/Ec.
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The Density of States in the Valley

In the centre of the Coulomb valley, µ = M0Ec, we find, for βEc ≫ 1,

ν(ε)

ν0
= 1 − f(ε− ωM0) + f(ε− ωM0−1) where (4.42)

ωN =
(
N −M0 +

1

2

)
Ec. (4.43)

This describes the standard gap in the tunnelling density of states pictured in diagram 4.3.

In the Coulomb valley there are no states to be tunnelled into and hence the conductance

is suppressed around these points.

The Density of States at the Degeneracy Point

Near the degeneracy point, µ = Ec(M0 + 1/2) + δµ, we find, for βEc ≫ 1, that

ν(ε)

ν0
=

1 − f(ε+ δµ) + f(ε+ Ec + δµ)

1 + eβδµ
(4.44)

+
eβδµ[1 − f(ε− Ec + δµ) + f(ε+ δµ)]

1 + eβδµ
. (4.45)

This gives the cases, for |δ|µ≫ T ,

ν(ε)

ν0
≈ 1 +

1

2
[f(ε+ Ec) − f(ε− Ec)] if δµ = 0, (4.46)

ν(ε)

ν0
≈ 1 − f(ε+ δµ− Ec) + f(ε+ δµ) if δµ > 0, (4.47)

ν(ε)

ν0

≈ 1 + f(ε+ δµ+ Ec) − f(ε+ δµ) if δµ < 0. (4.48)

At the degeneracy point (δµ = 0) the gap in the density of states is reduced to a “half-

gap”, see figure 4.1. As we shall see this half-gap is required to regain the correct form

for the differential conductance at the degeneracy points[19, 20, 22, 21].

4.3 Current Through a Dot

We wish to consider a system comprised of two quasi-one dimensional leads attached to

a quantum dot by point contacts. The quantum dot is described by the Hamiltonian
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Figure 4.1: The density of states at T 6= 0 at the degeneracy point.
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Figure 4.2: The density of states at T 6= 0 near the degeneracy point. The intermediate
case between figures 4.1 and 4.3
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Figure 4.3: The density of states at T 6= 0 away from the degeneracy point.
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Ĥ = Ĥ0 + Ĥi as before, see equation (4.1). However we now also include the leads in Ĥ0

and introduce a coupling term, Ĥt+, between the dot and the leads. The current through

the dot is given by

I = Q̇ = ei[Ĥ, N̂ ] = ei[Ĥt, N̂ ] (4.49)

Ĥ = Ĥ0 + Ĥt + Ĥi (4.50)

Ĥt =
∑

α,n,k

[tα,n,kd̂
†
α,nâk + t∗α,n,kâ

†
kd̂α,n]. (4.51)

Where α labels the leads (left and right), â† is the creation operator for electrons in the

dot and d̂†α is the creation operator for electrons in lead α. Calculating the commutator

in the definition of the current, I, tells us that

I = ie
∑

α,n,k

fα〈tα,n,kd†α,nak − t∗α,n,ka
†
kdα,n〉 with (4.52)

fα =





1 left lead

−1 right lead

. (4.53)

fα is introduced to reflect the fact that tunnelling between the left lead and the dot is in

the opposite direction to tunnelling between the right lead and the dot.

The current can be written using the functional integral representation and introducing

a source function, J . If we have

I = e
∑

α,n,k

∂ lnZ[J ]

∂[Jα,n,k(t)]

∣∣∣∣
J=0

with (4.54)

Z[J ] =

∫
DψDψ̄eiS0+iSt+i

∑
α,n,k fα

∫
c dt[tα,n,kψk(t)ψ̄α,n(t)−t∗α,n,kψα,n(t)ψ̄k(t)]Jα,n,k(t), (4.55)

then performing the derivative gives us

I =
ie

Z[0]

∑

α,n,k

fα

∫
DψDψ̄

[
tα,n,kψk(t)ψ̄α,n(t) − t∗α,n,kψα,n(t)ψ̄k(t)

]
eiS0+iSt . (4.56)

This is the functional integral representation of equation (4.52). The actions in equation
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(4.54) are

iS0 = i

∫

c

dt[
∑

k

ψ̄k(t)i∂tψk(t) −H ] + i
∑

n,α

∫

c

dtψ̄α,n(t)[i∂t − ξn,α]ψα,n(t) and (4.57)

iSt = i
∑

α,n,k

∫

c

dt[tα,n,kψ̄α,n(t)ψk(t) + t∗α,n,kψ̄k(t)ψα, n(t)]. (4.58)

We imply that DψDψ̄ are the integrals over the fields for both leads ({ψα,n}) and the dot

({ψk}). H is the Hamiltonian for the quantum dot given in equation (4.1) and ξn,α are

the dispersion relations for the lead electrons.

The next step is to integrate out the leads from this expression leaving the Green’s

function for the dot coupled to two mass operators courtesy of the leads. We define the

mass operators as

iΣα,k,k′(t, t
′) =

∑

n

tα,n,kt
∗
α,n,k′iGα,n(t, t

′) =
∑

n

tα,n,kt
∗
α,n,k′〈Tψα,n(t)ψ̄α,n(t′)〉, (4.59)

which leads to

I = e
∑

α,kk′

fα

∫

c

dt′[iGkk′(t, t
′)iΣα,k′k(t

′, t) − iΣα,kk′(t, t
′)iGk′k(t

′, t)] (4.60)

for the current. The Green’s function for the quantum dot coupled to the leads is then

iGkk′(t, t
′) =

1

Z

∫
DψDψ̄ψk(t)ψ̄k′(t

′)eiS0−i
∑
α,kk′

∫
c dtdt

′ψ̄k(t)Σα,kk′ (t,t
′)ψk′ (t

′). (4.61)

We can now convert our contour to the usual Keldysh contour by extending it to plus and

minus infinity and neglecting the “tail” (t0 → t0 − iβ). Splitting the Green’s functions

into contributions from t < t′ and vice versa and rearranging gives

I = e
∑

α,kk′

fα

∫ ∞

−∞
dt′[iG>

kk′(t, t
′)iΣ<

α,k′k(t
′, t) − iΣ>

α,kk′(t, t
′)iG<

k′k(t
′, t)]. (4.62)

Which, due to all the Green’s functions being diagonal in frequency space as shall be seen,
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can be arranged to give

I =
e

2

∑

α,kk′

fα

∫ ∞

−∞
dt′[iGk

kk′(t− t′)∆Σα,k′k(t
′ − t) − iΣk

α,kk′(t− t′)∆Gk′k(t
′ − t)]. (4.63)

Where we have used the notation ∆G ≡ iGR − iGA.

Dyson’s equation can be found from equation (4.61). With g as the uncoupled dot

and defining Σ ≡ ΣL + ΣR we find (G)−1 = (g)−1 −Σ, which can be written explicitly as

iGR/A
nm (ω) = igR/Anm (ω) − igR/Ano (ω)iΣ

R/A
ol (ω)iG

R/A
lm (ω) (4.64)

iGK
nm(ω) = igKnm(ω) − [igRno(ω)iΣR

ol(ω)iGK
lm(ω)

+igRno(ω)iΣK
ol (ω)iGA

lm(ω) + igKno(ω)iΣA
ol(ω)iGA

lm(ω)]. (4.65)

The indices o and l are summed over. It is important to note that the quantum dot

described by g is the full interacting Green’s function calculated in section 4.1. Now as

Σnm is diagonal we can trivially solve Dyson’s equation. This is true as we assume that

the probability of tunnelling to different energy levels is uncorrelated[8].

Using these definitions along with

∑

k

ig
R/A
k (ω) = ±πν(ω) (4.66)

iΣR/A
nm = ±1

2
(ΓL + ΓR︸ ︷︷ ︸

≡Γ

)δnm (4.67)

Γα = 2πνα|t|2, (4.68)

we find for the current, to lowest order in ν(ω)Γ,

I =
e

2

∑

α

fα

∫
dω

2π
(h− hα)2πν(ω)Γα (4.69)

The distribution function for the coupled dot, h(ω), is then found by balancing currents

through the left and right contact, as in a steady state there should be no build up of

charge in the dot. This condition can be written as IL = IR where I = IL + IR and leads
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to

h =
hLΓL + hRΓR

ΓL + ΓR
. (4.70)

As the leads are in well defined equilibria hα(ω) = tanh[(ω − µα)/2T ] with the chemical

potential for the leads including a bias voltage: µα = µ − eVα. We can also derive this

consideration from the Kinetic equation for a region coupled to two reservoirs (the leads),

see section 4.3.1.

Thus we find

I =
e

2

∫
dω

2π
[hR(ω) − hL(ω)]

ΓLΓR
ΓL + ΓR

2πν(ω). (4.71)

For a central region without interaction this is just the two channel Landauer formula. If

we rewrite equation(4.63) using ∆G = −iGRiGA∆Σ = −iGRiGAΓ we find

I =
e

2

∫
dω

2π
[hR(ω) − hL(ω)] tr[T (ω)T †(ω)] where (4.72)

Tαα′(ω) = 2π
√
νL

√
νRt

∗
αtα′

∑

nm

GR
nm(ω). (4.73)

See, for example, Meir and Wingreen[29, 30] and Imry and Landauer[44].

Taking the expression for the density of states in the regime where Ecβ ≫ 1 we find,

to linear order in the bias V = VL − VR,

I =
e2V ν0

2

ΓLΓR
ΓL + ΓR

∫
dx

sech2(x)

(1 + eβδµ)

[
1 +

1

2
tanh

(
x+

δµ− Ec
2T

)
− 1

2
tanh

(
x+

δµ

2T

)

+eβδµ
{

1 +
1

2
tanh

(
x+

δµ+ Ec
2T

)
− 1

2
tanh

(
x+

δµ

2T

)}]
.(4.74)

This will then lead to

G =
dI

dV
=

e2ν0

2(1 + eβδµ)

ΓLΓR
ΓL + ΓR

[{
2 − coth(δµβ/2) +

δµβ

2
csch2(δµβ/2)

}

+eβδµ
{

2 + coth(δµβ/2)− δµβ

2
csch2(δµβ/2)

}]
. (4.75)
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Leading to, for small δµ,

G = e2ν0
ΓLΓR

ΓL + ΓR

δµβ/2

sinh(δµβ)/2
. (4.76)

This is the classic result of a peak in conductance at the degeneracy point which is expo-

nentially suppressed in the valley. It is worth noting that we require a correct description

of the density of states at (and near) the degeneracy point to correctly describe this

behaviour.

4.3.1 The Kinetic Equation

We can derive the expression for the steady state distribution function for a central region

coupled to two reservoirs. We use the Keldysh component of Dyson’s equation which is

equivalent to the kinetic equation[45]. We assume the uncoupled dot is completely iso-

lated, therefore it has a fixed number of particles and is neither in any sort of equilibrium

nor in the grand canonical ensemble. The leads are assumed to be in well defined equi-

libria. Coupling between the leads and the dot is switched on at some time in the past

and the system will then reach a steady state. This switching process will be described

by a Kinetic equation.

Let us solve the kinetic equation for a trivial set up. We will assume a “dot” with a

single state coupled to two leads as before. To find the kinetic equation we start from the

Keldysh component of Dyson’s equation:

iGK = igK − igRiΣRiGK − igRiΣKiGA − igKiΣAiGA. (4.77)

Matrix multiplication is implied in all necessary indices. If we also use the other two

components of Dyson’s equation we can rearrange this to give

(iGR)−1iGK(iGA)−1 = (igR)−1igK(igA)−1 − iΣK . (4.78)

We wish to solve this for F tt′ , the distribution function for the dot. The coupling (tα,n,k)

between the leads and the dot will be time dependent: at (t − t′) = −∞ the dot is

assumed to be uncoupled from the leads and then the coupling is slowly turned on. At
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(t − t′) = 0 the leads and the dot are coupled. We then require the behaviour of F tt′

at (t − t′) = ∞ when the system has reached a steady state. We can write the ansatz

iGK = iGR F −F iGA, with matrix multiplication over the time indices important in the

order. Substituting in the operator forms (iGR/A)−1 = (±∂t + iξ)δtt′ + iΣ
R/A
tt′ leads us to

∂t+t′ F t′t +iΣ
R
tt1

F t1t′ −F tt1 iΣ
A
t1t′ = iΣK − (igR)−1igK(igA)−1. (4.79)

When this has reached a steady state, and the couplings between dot and leads are

constant, it is simple to see

F(ω) =
hL(ω)ΓL + hR(ω)ΓR

ΓL + ΓR
. (4.80)

ω is the Fourier transform of t− t′. In a steady state there will be no dependence on t+ t′.

Note that (igR/A)−1 = (±∂t + iξ ∓ iδ)δtt′ and so (igR)−1igK(igA)−1 = ∂t+t′htt′ = 0 in the

steady state.

4.3.2 Nonlinear Conductance

We can also find the expression for nonlinear conductance. Starting from

I =
e

2

∫
dω

2π
[hR(ω) − hL(ω)]

ΓLΓR
ΓL + ΓR

2πν(ω) (4.81)

we find

I =
eν0

2

ΓLΓR
ΓL + ΓR

2T

1 + eβδµ

∫
dx

[
tanh

(
x− eVR

2T

)
− tanh

(
x− eVL

2T

)]

×
[
1 +

1

2
tanh

(
x+

δµ− Ec
2T

)
− 1

2
tanh

(
x+

δµ

2T

)

+eβδµ
{

1 +
1

2
tanh

(
x+

δµ+ Ec
2T

)
− 1

2
tanh

(
x+

δµ

2T

)}]
(4.82)
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near the degeneracy point. Performing the integral then leaves the result

I =
eν0

2

ΓLΓR
ΓL + ΓR

[
e(VL − VR) + tanh(δµβ/2)

×
{

(eVR + δµ) coth[(eVR + δµ)β/2]

−(eVL + δµ) coth[(eVL + δµ)β/2)]

}]
. (4.83)

This recovers the previous result in the linear conductance regime. This result does not

depend exclusively on V = VL − VR, as the distribution functions alter differently near

the regions VR and VL. Exactly at the degeneracy point the conductance is linear and

recovers the previous result.

4.4 Summary

In this chapter we have derived the Green’s function for an isolated quantum dot and

compared this to previous derivations. We then applied this to the case of a dot weakly

coupled to two leads and looked at the differential conductance through the system.
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Chapter 5

BACKGROUND AND MOTIVATION FOR

METAMAGNETIC CRITICALITY

In this chapter we present the concept of a quantum phase transition and discuss a

particular example. We are interested in the metamagnetic phase transition seen in

the bilayer ruthenate Sr3Ru2O7. We will present the experimental evidence for such

a quantum phase transition and introduce the background theory for this system. In the

following chapter we shall address a specific model for this sample.

5.1 Quantum Critical Points

The idea of a zero temperature phase transition was first worked out by Hertz[46] in

1976. However it was not until the early nineties when the issue was taken up again and

it has now become a very active area of study[47, 48, 49]. In a normal second order phase

transition at finite temperatures a phase plot can look like figure 5.1. At the critical

point of a phase transition there are two coexistent and competing phases. The idea of a

quantum critical phase transition is to tune the end point of the line of phase transitions

to zero temperature. This is achieved by varying some part of the system such as pressure

or, in Sr3Ru2O7, the angle of a magnetic field applied to the sample. Once the end point

is lying on the zero temperature axis it is referred to as a quantum critical endpoint.

The correlations associated with this transition will control the behaviour around the

quantum critical point. A quantum phase transition is when the ground state of a system

undergoes a phase transition, at zero temperature, as some parameter of the system is
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Figure 5.1: (a) A second order phase transition with a critical endpoint. Or, in the case of
the metamagnetic transition, a first order phase transition. (b) Tuning a parameter, for
example the direction of the field relative to the c-axis in Sr3Ru2O7, forces the endpoint
to T = 0 giving a quantum critical endpoint. H is applied magnetic field. Region 1 is the
classically ordered state and region 3 is the quantum disordered state. In between these
at finite temperature is region 2, dominated by the critical fluctuations of the quantum
critical point. For the metamagnetic transition both 1 and 3 are Fermi metals. (qcep
stands for the quantum critical endpoint.)

changed. As we are at zero temperature it is driven by quantum, rather than thermal,

fluctuations. This parameter could be chemical composition, magnetic field, pressure or

some other variable of the system.

We are interested in the case of the metamagnetic quantum critical point which is

manifested in Sr3Ru2O7. The structure of Sr3Ru2O7 is sketched in figure 5.4. It is a

bilayer ruthenate. (The single layer version is an unconventional superconductor.) It

is the RuO2 layers that are active in the a-b plane, and we are interested in transport

properties in these layers. The behaviour of the resistivity and magnetic susceptibility is

what suggests a quantum critical point in this material.

A metamagnetic material is one which demonstrates a sharp rise in magnetization at

a specific applied magnetic field, see figure 5.5. Before this jump in magnetization they

act as paramagnets. This transition is a first order phase transition. At low enough

temperatures, below about 5K, Sr3Ru2O7 exhibits this kind of behaviour, see figure 5.2.

If the applied B-field is in the ab plane of Sr3Ru2O7 then this occurs at around 5 Tesla.

Strictly speaking for a metamagnetic transition to occur the jump in magnetization must

be sudden. This discontinuity shows up as a divergence in the magnetic susceptibility.
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Figure 5.2: Data showing the onset of a metamagnetic phase transition as temperature is
lowered, from[50]. Also shown is the reduction of the metamagnetic transition when the
magnetic field is parallel to the c-axis.

Figure 5.3: A coded plot showing T dependence of resistivity, from [50]. The shades label
the power, α, in ρ = ρ0 + AT α.

65



Figure 5.4: Structure of Sr3Ru2O7. Courtesy of [51].

(a) (b)

MM

HH

Figure 5.5: These schematic diagrams show the metamagnetic phase transition. Diagram
(a) demonstrates the sudden jump in magnetization, M , at a certain value of the applied
magnetic field, B. The slope of the magentization, which is related to the susceptibility,
diverges at the transition. Diagram (b) shows this transition just vanishing at the end
point when the gradient just diverges but there is no sudden jump in the magnetization.

The line of phase transitions in figure 5.1(a) is the line of these transitions. The end

point is the position in the phase diagram at which the sudden jump in the magnetization

disappears as we rotate the orientation of the B-field with respect to the c-axis of the

system. As the angle of B-field to the c-axis changes it is this end point which is tuned

down to T = 0. The end point falls below the scope of experiment at an angle of 5 ◦.

The residual line of finite temperature phase transitions is then indistinguishable from a

quantum critical point.

The simplest data which demonstrates the reason for believing a quantum critical

point exists in Sr3Ru2O7 is a “phase plot”. Figure 5.3 shows the temperature dependence

of the resistivity, ρ = ρ0 + AT α, for different applied B‖c and over ranges of T . This is
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found from

∂ ln(ρ− ρ0)

∂(ln T )
= α. (5.1)

So to find α, ln(ρ − ρ0) is plotted against lnT and the gradient is calculated. As can

be seen from the plot, this pictorially represents exactly what would be expected of a

quantum critical point. (Compare figure 5.3 to figure 5.1(b).) The areas where α = 2 are

the standard Fermi liquid behaviour. The linear T dependence of the resistivity at higher

temperatures is controlled by the quantum critical point[52]. When the critical field is

aligned with the c-axis a novel resistivity occurs as T → 0, α→ 3. This low temperature

state is driven by the divergent fluctuations of the quantum critical point.

A clear way of looking for the transition is to study the magnetic susceptibility, Ξ.

From

Ξ =
∂M

∂H

∣∣∣∣∣
T,p

, (5.2)

with M the magnetization and H the applied field, a metamagnetic transition will ex-

perimentally appear as a maximum in the susceptibility. Theoretically the endpoint of

the transition will give a divergent cusp in the susceptibility. These can be measured

experimentally[52, 53, 54]. Figure 5.6 demonstrates the appearance of these cusps.

It is possible to experimentally follow the line of critical endpoints down toward zero

with changing field direction and strength[53]. Figure 5.7 shows the temperature of the

critical endpoint being tuned to zero temperature by changing the direction of the mag-

netic field with the a-b planes. The value of the critical field at which the transition occurs

can also be followed as we approach the quantum critical point: see figure 5.8.

The information in these plots can be collected into a 3-d phase diagram, figure 5.9.

The region which is shaded shows all peaks in the magnetic susceptibility.
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Figure 5.6: Magnetic susceptibility in Sr3Ru2O7[54].

Figure 5.7: The critical temperature in Sr3Ru2O7 as a function of the angle between the
B-field and the a-b planes[53].
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Figure 5.8: The critical field in Sr3Ru2O7 as a function of the angle between the B-field
and the a-b planes[53].

Figure 5.9: The line of endpoints in Sr3Ru2O7[53].
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5.2 Quantum Criticality from the Hubbard Interac-

tion

Firstly we will introduce the basic idea that Hertz proposed in his 1976 paper on zero

temperature phase transitions. Starting from the Hubbard interaction, Hertz[46] derived

a Ginzburg-Landau functional concentrating on the spin-density fluctuations. With the

purpose of viewing the zero, or low temperature, quantum critical phenomena. The

Hubbard interaction is given by

Ĥint = V
∑

i

n̂i↑n̂i↓, (5.3)

with the spin dependent number operator n̂iσ = ψ̂†
iσψ̂iσ. This can be expanded into the

charge, n̂ci , and spin, n̂si , fluctuations separately.

Ĥint =
V

4

∑

i

(n̂i↑ + n̂i↓)
2

︸ ︷︷ ︸
=n̂ci

−V
4

∑

i

(n̂i↑ − n̂i↓)
2

︸ ︷︷ ︸
=n̂si

. (5.4)

We expect only the spin fluctuations to be important, and henceforth the charge fluctu-

ations of the interactions shall be neglected. This can be strictly checked by including

these terms and verifying that they are small in the expansion.

We start from a functional integral of the continuous limit of the interaction given by

the spin contribution of equation (5.4). This gives the partition function as

Z =

∫
DψDψ̄e−

∫ β
0 dτ

∫
dr
∑
σ ψ̄σ(x)[∂τ+ξ̂(r)]ψσ(x)e

V
4

∫ β
0 dτ

∫
dr[ns(x)]2 . (5.5)

Performing a Hubbard-Stratonovich transformation on the interacting part, such that

1

N

∫
Dφe−

1
V

∫
d3xφ2(x)e−

∫
dτdrφ(x)ns(x) = e

V
4

∫
dτdr[ns(x)]2 , (5.6)

will give

Z =

∫
Dφe−

1
V

∫
d3xφ2

∫
Dψdψ̄e−

∑
σ

∫
d3xψ̄σ(x)(∂τ+ξ̂(r)+σφ(x))ψσ (x). (5.7)
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Now performing the Gaussian fermionic integrals and using the result ln[detM] = Tr ln[M]

Z =

∫
Dφe−

1
V

∫
d3xφ2(x)eTr ln[∂τ+ξ(r)+φ(x)]eTr ln[∂τ+ξ(r)−φ(x)]. (5.8)

We need to evaluate the logarithmic term. This shall be done perturbatively.

If we write G(x) = (∂τ + ξ(r)−1 then we can rewrite Z as, ignoring any constant

coefficients,

Z =

∫
Dφe−

1
V

∫
d3xφ2(x)eTr ln[1+G(x)φ(x)]eTr ln[1−G(x)φ(x)]. (5.9)

We can now expand the two logarithmic terms in powers of “Gφ”. This will lead to a

Ginzburg-Landau type functional with φ playing the role of the order parameter. What

this order parameter corresponds to shall be expounded shortly. Firstly, if we assume

that we can truncate the expansion then, symbolically,

Z ≈
∫
Dφe−

1
V

∫
d3xφ2(x)+Tr[−G2φ2−G4φ4]. (5.10)

The second order term in this expansion contains the correlator χ0. In the Matsubara

representation this correlator is

χ0(q, ωn) = −T
∑

k,ǫm

G(k, ǫm)G(k + q, ωn + ǫm). (5.11)

ǫn are the fermionic and ωn the bosonic Matsubara frequencies. This is the Lindhard

function: see appendix G. This has the structure, for small q/pF and ω/qvF :

χ0(q, ωn) ≈ ν0

[
1 − 1

3

(
q

2pF

)2

− π

2

( |ωn|
qvF

)]
. (5.12)

This leads us to the form of the bosonic propagators describing the spin interaction in

the system.

Hence, to second order, we have a functional integral looking like

Z =

∫
Dφe−

∑
q,ωn

( 1
V
−χ0(q,ωn))φ2(q,ωn). (5.13)
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As A ≡ V −1 − χ0 shifts through zero the behaviour of the action will change dramati-

cally. This change corresponds to the Stoner instability which it is believed describes the

metamagnetic transition in this material. We shall use an action like this at the Stoner

instability to describe the bosonic propagators in the system at criticality. In a simple

minded sense, if A is positive then the perturbation expansion may be valid and the above

functional integral should describe the behaviour of the system. But if A is negative then

the expansion breaks down. As we choose V to be a constant evidently A is in fact a

function and cannot be set to zero. It is only the leading order term which is cancelled

at the Stoner instability. (This is in fact the Stoner criteria.)

The original formulation of Hertz was revisited by Millis[55] and applied to itinerant

magnetic fermion systems. These are systems in which the spins are not fixed.

5.3 The Metamagnetic Model

The application of these ideas to the metamagnetic transition was later developed through

several papers[56, 57, 52]. Here we present an overview of how the appropriate action is

derived. This shall be the starting point for our work and that of Kim and Millis[59]. We

start from a functional integral describing electrons with a spin density interaction. In

general a spin density operator is given by

Sq =
∑

kαβ

ψ†
k+q,ασαβψk,β. (5.14)

With σαβ a vector of the Pauli matrices and α/β the spin indices. So the partition

function looks like

Z =

∫
DψDψ̄e−Tr[ψ̄qα(τ)(∂τ+ξq)ψqα(τ)−J(q)Sq(τ).S−q(τ)]. (5.15)

Tr is over imaginary time, momenta and spin.

Firstly however we shall briefly go through the derivation of the action for the meta-

magnetic quantum critical point without disorder and in the Matsubara technique. The
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following Hubbard-Stratonovich transformation is made:

∫
Dφ

Nφ

e
Tr
[
λ2φq(τ).φ−q(τ)

4Jq
−iλφq(τ).Sq(τ)]

=

∫
Dφ

Nφ

e
Tr
[(

λφq(τ)

2
√
Jq

−i
√
JqSq(τ)

)
.
(
λφ−q(τ)

2
√
Jq

−i
√
JqS−q(τ)

)]

×eTr Jq[Sq(τ).S−q(τ)]

= eTr Jq[Sq(τ).S−q(τ)]. (5.16)

Notice that this gives an interpretation of the new bosonic vector field as a spin density

type of fluctuation. Integrating the now Gaussian Fermionic degrees of freedom yields

Z =

∫
Dφe−S. (5.17)

Where the action S is given by

S = Tr
λ2φq(τ)φ−q(τ)

4J
− Tr ln[G−1

0 (q, ωn) + iλφq(ωn).σ]. (5.18)

To get to this form we use the standard result for a Gaussian fermionic functional integral

and the general expression ln[DetM] = Tr ln[M].

We can now expand in the bosonic field to get a Ginzburg-Landau style free energy

action. To second order this will give the Lindhard function, which can be expanded.

S =
λ2

2
Tr

[(
1

4J
− νd

2

(
1 − 1

3

q2

4k2
F

− π

2

|ωn|
qvF

))
φ−q(−ωn).φq(ωn)

]
(5.19)

is the basic action required. Note we have also assumed we are near the Stoner instability

so that J−1 ≈ νd/2.

The full metamagnetic Landau free energy contains sixth order terms and a negative

coefficient for the fourth order term. We expand around the critical point in this action

to find the action we use. We can rescale the various length scales and energy scales to

more convenient ones. Introducing ξ0 ≈ k−1
F , v ≈ vF and an energy scale E0 we have, in

line with the notation of Kim and Millis,

S =
1

2
Tr[2h.φ + ξ2

0q
2φ2 +

1

2
φ4] + Tr

|ωn|
vq

φ2. (5.20)
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Now, the trace is defined as

Tr(. . .) =
T

E0

∑

ωn

∫
d2q

(2π)2
a2(. . .) (5.21)

where a is a cutoff length scale of the order of the lattice constant. E0 is defined such

that the coefficient of the fourth order term is a quarter. The following have also been

rescaled:

h =
(H −HM)Msat

E0
, (5.22)

φ(r, τ) =
M(r, τ) −M∗

Msat

. (5.23)

Where M∗ is the average magnetization at the critical field; Msat is the high field satu-

ration and HM = E0/Msat is the critical field; h is the applied field measured from the

transition; φ is the order parameter and measures the scaled magnetization of the system

compared to the average; and M(x, τ) is the actual magnetization of the system.

The action in equation (5.20) is the starting point for the work of Kim and Millis. In

the next chapter we shall present their phenomenological model based on this action.

The propagator for the saddle point fluctuations of action (5.20) can be shown to be

D(q, ωn) =
1

|ωn|
vq

+ ξ2
0q

2 + h
2
3

. (5.24)

We leave the derivation to the next chapter and confine ourselves here to mentioning

models where similar Green’s functions show up. Outside of metamagnetic field theories

and similar electronic interactions this propagator also appears in gauge interactions.

These theories are applied to the t-J model and resonant valence bond theories in high-Tc

superconductors[60, 61, 62, 63, 64, 65] and to the theory of half filled Landau levels in

the fractional quantum hall effect[60, 66, 67, 68]. However, due to the different nature

of the coupling between these gauge fields and the electrons in these systems, we cannot

directly use the same integration methods.
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Chapter 6

METAMAGNETIC QUANTUM CRITICALITY

In this chapter we present a phenomenological model and calculate its outcome for scatter-

ing from stationary electronic impurities. The phenomenological model we are interested

in was proposed by Kim and Millis[59]. This describes a two dimensional metamagnetic

quantum critical point. Their starting point for calculations was to describe both free

electrons and bosonic fluctuations and give them an interaction. The bosonic fluctua-

tions, however, are derived by bosonizing the interacting electrons in the system. Hence

it is not clear whether such a theory is physically tenable due to the apparent contradic-

tion of both integrating out an electronic degree of freedom and simultaneously retaining

it. However, it is possible to derive their action if we allow ourselves certain assumptions.

We present their calculation and generalize it to the Keldysh nonequilibrium method. We

also correct some mistakes which lead to an incorrect lifetime for the quasiparticles.

We are interested in calculating the self energy and the scattering integral for the

model. From the self energy we find the quasiparticle lifetime, and from the scattering

integral it is possible to find the resistivity of the model.

6.1 The Phenomenological Action

Kim and Millis consider a model of electrons coupled to the bosonic degree of freedom

described by equation (5.20). This is an inconsistent starting point as the bosonic degree

of freedom is found by integrating out the electronic degree of freedom. However, as it

will be shown section 6.2, this model can be trivially derived if we are able to justify

dividing the electrons into two “types” in an appropriate manner. This model is similar
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to the models mentioned at the end of the preceding chapter.

They then consider a perturbative theory of the electrons coupled to the bosonic field.

To this end we first require the propagator associated with the critical fluctuations of the

bosons, equation (5.20). The coupling term is given by

Sφψ = gTr ψ̄α(x)σ
z
αβψβ(x)φ(x), (6.1)

with the usual free electron action

Sel = Tr ψ̄pα(ωn)[−iωn + ξp]ψpα(ωn). (6.2)

The coupling constant g is given by g2 = 4π2v2
F/a

2E0vSF [59]. This gives us total action

to consider of

S = Sφψ + Sel + Sφ and as usual

Z =

∫
DφDψDψ̄e−S. (6.3)

The action Sφ is the bosonic action, derived previously, of equation (5.20):

Sφ =
1

2
Tr[2h.φ + ξ2

0q
2φ2 +

1

2
φ4] +

1

2
Tr

|ωn|
vq

φ2. (6.4)

First we will find the propagator for the original fluctuations, described by Sφ. This

is calculated by expanding about the saddle point

∂Sφ
∂φ

∣∣∣∣
φ0

= h+ L̂φ0︸︷︷︸
≈0

+φ3
0 = 0. (6.5)

L̂φ0 = (ξ2
0q

2 + |ω|/vq)φ0 is ignored in a gradient expansion assuming the solution is

homogeneous in space and time. Hence φ0 ≈ −h 1
3 . Expanding about the saddle point,

φ ≈ φ0 + δφ, yields

Sφ = S0 + Tr δφ[L̂+ φ2
0]δφ. (6.6)
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This gives the bosonic propagator as

P (q, ωn) = −i〈φq(ωn)φq(ωn)〉

= [L̂+ φ2
0]
−1

=
1

ξ2
0q

2 + |ωn|
vq

+ h
2
3

, (6.7)

P (q, ωn) describes the bosonic degree of freedom about its saddle point solution. This is

used in perturbative field theory calculations coupled to free electrons.

6.2 Derivation of the Phenomenological Action

We wish to derive a model which describes electronic and bosonic degrees of freedom

interacting by a simple coupling term (see equation (6.1).) Our aim in this section is

not to justify the model of Kim and Millis presented in section 6.1, but to elucidate the

necessary assumptions that are required for it to be valid. If we assume we can divide the

electrons of our system into two categories then it is possible to derive an action like that

of Kim and Millis, given a few further assumptions. We will bosonize and integrate out

one electron degree of freedom and leave the other remaining. We shall leave a discussion

of the possible ways of justifying this move to chapter 7. As with the previous derivations

for metamagnetic actions we start with a spin density interaction of the form

Ĥi = −1

2
Tr JqŜqŜq where Ŝq =

∑

k,α,β

ψ̂†
k+q,ασ

z
αβψ̂k,β. (6.8)

Then we assume that we can divide the electrons into two types: ψA(x) and ψB(x). It

is not clear, however, what would distinguish between them. The A electrons are the

current carrying electrons in the 2-d planes. Most importantly the electrons must obey

the property 〈ψ̄AψB〉 = 〈ψ̄BψA〉 = 0. For example, we may wish to distinguish between

fast and slow electrons or those in the planes and those along the c-axis. Thus, from

77



equation(5.15), we have

Z =

∫
DψADψ̄ADψBDψ̄Be−

∫
dτ
∑

q,α[ψ̄Aqα(τ)(∂τ+ξq)ψAqα(τ)+ψ̄Bqα(τ)(∂τ+ξq)ψBqα(τ)]

e−
∫
dτ
∑

q
JSB

q
(τ)SB

q
(τ)+2J

∫
dτ
∫
d2r

∑
α[ψ̄Bα ψ̄

A
ᾱψ

A
αψ

B
ᾱ−ψ̄Bα ψ̄AᾱψAᾱψBα ]. (6.9)

The interaction of the A-electrons with themselves has been neglected. We consider them

to be free electrons in the a-b plane.

We can now perform a Hubbard-Stratonovich transform on the B-electron interaction

term. This introduces a field φ and the Fermionic integral over the B-electrons becomes

Gaussian. The partition function then becomes

Z =

∫
Dφe

∫
dτd2r

φ2(x)λ2

4J

∫
DψADψ̄Ae−

∫
dτd2r

∑
α ψ̄

A
α (x)(∂τ+ξ̂r)ψAα (x)

∫
DψBDψ̄Be−

∫
dτd2rψ̄Bα (x)[(∂τ+ξ̂r)δαβ+iλφ(x)σzαβ ]ψBβ (x)

e−2J
∫
dτd2r

∑
αβ ψ̄

B
α [
∑
δ ψ̄

A
δ ψ

A
δ δαβσ

x
δα−ψ̄Aβ ψAα σxαβ ]ψBβ︸ ︷︷ ︸

≡e−2J Tr ψ̄Bα (x)Aα,β(x)ψB
β

(x)

(6.10)

which we will integrate over DψB. (Arguments are dropped for clarity where it is unam-

biguous what is intended.) After performing this integral we shall have

Z =

∫
Dφe

∫
dτd2rφ

2(x)λ2

4J

∫
DψADψ̄Ae−

∫
dτd2r

∑
α ψ̄

A
α (x)(∂τ+ξ̂r)ψAα (x)

eTr lnG−1
0 (q,ωn)eTr ln[1+G0(q,ωn)iλφ(q,ωn)σzαβ+G0(q,ωn)2JAα,β(q,ωn)]. (6.11)

We shall Taylor expand the terms

eTr lnG−1
0 eTr ln[1+G0iλφσzαβ+G02JA(α,β)]. (6.12)

The small parameters for this expansion are J/εF ≪ 1 and λ/εF ≪ 1. To leading order

we find the terms describing φ, as in the normal metamagnetic action equation (5.20),

and also the interaction term:

e−4JλTrG0(x−x′)φ(x)G0(x′−x)SA(x′) = e−4JλTr Π(q,ωn)φ(q,ωn)SA(q,ωn). (6.13)
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Where Π(q, ωn) is the Lindhard function, see appendix G. To lowest order this gives a

constant and hence

Sφψ = (4Jλω0) Tr ψ̄Aα (x)σzαβψ
A
β (x)φ(x). (6.14)

Together with the bosonic action over φ and the free electron action for ψA this reproduces

the action of Kim and Millis, equation (6.3). To summarize we require the following to

be true: 〈ψ̄AψB〉 = 〈ψ̄BψA〉 = 0; J/εF ≪ 1 and λ/εF ≪ 1. J measures the coupling

between the A and B electrons and λ measures the strength of the interaction between B

electrons.

6.3 Keldysh Formulation

We now present the metamagnetic model in the Keldysh representation. We can write

the original action, equation (5.15), on the Keldysh contour as

iS1 = iTrσ3
ij [ψ̄j(q, ω)(ǫ̂− ξ̂q)ψj(q, ω) − Jq(Sq(ω).S−q)j(ω)]. (6.15)

Where the trace now includes a trace over the indices i, j labelling the upper and lower

time contour. We can now perform a Hubbard-Stratonovich transformation on the quartic

part of this action. This will introduce a bosonic field to integrate over and we will be

left with

iS2 = iTr

[
λ2

4Jq

Φ̂T
q,α(ω)σ3Φ̂−q,α(−ω)

]
+ iTr[−iψ̄i,q,α(ω)λφ̂i

q,α(ω).σαβγ̂
iψi,q,β(ω)] + iS0

iS0 = iTrσ3
ijψ̄i,q,α(ω)[ǫ̂+ ξq]ψi,q,α(ω)

Z =

∫
DφDψDψ̄eiS2 . (6.16)

With the matrices

γ̂1 =



 1 0

0 0



 γ̂2 =



 0 0

0 −1



 (6.17)
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which are also traced over. Note that the σ3 matrix refers to the Keldysh space as does

the i index, all others refer to the spin structure. Also Φ̂T = (φ̂1, φ̂2) is in Keldysh space.

We now rotate to the standard Larkin-Ovchinnikov basis[43] using:

G = L0σ
3ĜL

†
0 φ1/2 =

1

2
(φ̂1 ± φ̂2). (6.18)

The L0 matrices are defined in section 2.3. The vertex matrices are now given by equation

(2.47). After performing this rotation we integrating out the fermionic degrees of freedom

which leaves us with the action

iS = iTr[ΦT
q,α(ω)σ1Φ−q,α(−ω)λ2/4J ] + Tr ln[G−1

0 (q, ω) − iλφδq,α(ω).σαβγ
δ]. (6.19)

Expanding the logarithm to the first non-vanishing order leaves

iS = i
λ2

2
Tr[ΦT

q (ω)σ1(1/2J + Π(q, ω)︸ ︷︷ ︸
≡L̂(q,ω)

)Φq(ω)] (6.20)

for the action. (We are only interested in the z-component of the spin). Π(q, ω) is the

Lindhard operator as before.

We require the terms in the action corresponding to the magnetic field and the

quartic term. We introduce them in the rotation where φ̂1,2 are the Bosonic fields

on the upper/lower part of the Keldysh contour. Noting that h(φ̂1 − φ̂2) = hφ2 and

1/4[φ̂4
1 − φ̂4

2] = φ1φ2(φ
2
1 + φ2

2) we find

iS = iTr[hφ2λ+ (λ2/2)ΦTσ1L̂Φ + λ4φ1φ2(φ
2
1 + φ2

2)]. (6.21)

If we expand around the saddle point of this action we can find the propagator we require:

P(q, ω) =


 (−iω/vq + ξ2

0q
2 + h2/3)−1 coth(ω/2T )[PR − PA]

0 (iω/vq + ξ2
0q

2 + h2/3)−1


 , (6.22)

which can then be used in the usual Keldysh diagram technique.
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Figure 6.1: The lowest order self energy diagram.
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Figure 6.2: Some of the self energy diagrams for the Green’s function. We consider the
diagrams included in (b). Contributions like (a) are neglected.

6.4 The Self Energy

In this section we present a calculation of the lowest order self energy contributions to the

electron Green’s functions due to the bosonic field. We demonstrate how to recover these

results in the Keldysh formalism and also where the previous derivation of the lifetime

erred[59]. We find that, away from the quantum critical point, the lifetime of the quasi-

particles is similar to that of a Fermi-liquid, modified by a logarithmic term. There is

always a Fermi-liquid like contribution to the lifetime but it is never dominant in the cases

we consider.

We want the lifetime of the particles interacting with the bosonic field. We will

consider the self energy which appears in Dyson’s equation: G−1 = G−1
0 − Σ. In the

Green’s function,

G(p, ε) = − i

Z
〈T Ŝψ̂†

p(ε)ψ̂p(ε)〉, (6.23)

we expand the S-matrix to find the corrections. The S-matrix is given by

T Ŝ = e−ig
∫∞
−∞ dtTr[ψ̂†

α(x)σzαβφ(x)ψ̂β(x)]. (6.24)
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Expanding this we obtain the first order correction. This is given by

G(p, ε) = G0(p, ε) +G0(p, ε) i2g2

∫
d2q

4π2

dω

2π
G0(p− q, ε− ω)〈φq(ω)φq(ω)〉

︸ ︷︷ ︸
≡Σ1

G0(p, ε)

+ · · · . (6.25)

Summing all such non-crossed contributions, see section 2.2, will give us the required

Green’s function. Thus we neglect all contributions containing crossed bosonic propaga-

tors and other higher order terms. Using P (q, ω) = −i〈φqφq〉 we can write the self energy

at zero temperature as

Σ1(p, t) = −ig2a2E0

∫
d2q

(2π)2

∫
dω

2π
G0(p− q, ε− ω)P (p, ε). (6.26)

This is the self energy that Kim and Millis deal with.

This can also be formulated in the Keldysh technique. The self energy in Keldysh

becomes:

Σij(p, ε) = −i(g2a2E0)

∫
d2q

(2π)2

dω

2π
γmikG

0
kl(p − q, ε− ω)Pmp(q, ω)γ̃plj. (6.27)

Hence we can write, in equilibrium,

ΣR(p, ε) = −ig
2a2E0

2

∫
d2q

(2π)2

dω

2π
[GR(p− q, ε− ω)PK(q, ω)

+GK(p− q, ε− ω)PA(q, ω)]

ΣA(p, ε) = [ΣR(p, ε)]∗

Σ21(p, ε) = 0

ΣK(p, ε) = −ig
2a2E0

2

∫
d2q

(2π)2

dω

2π
[1 + h(ε− ω)h̃(ω)]

(GR(p − q, ε− ω) −GA(p − q, ε− ω))(PR(q, ω) − PA(q, ω)) (6.28)

h̃(ω) is the bosonic distribution function. The usual rules for Keldysh matrices hold. We
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will consider zero temperature, therefore we can write

ΣR(p, ε) = − iv2
F

8π2vpF

∫
d2qdω

[
sgn(ω)GR(p− q, ε− ω)(PR(q, ω) − PA(q, ω))

+ sgn(ε− ω)(GR(p− q, ε− ω) −GA(p− q, ε− ω))PA(q, ω)
]
. (6.29)

After performing the frequency integration it is the possible to see that we can write

this in terms of the zero temperature version (as we would expect):

iℑΣR(p, ε) = iℑΣ1(p, |ε|). (6.30)

This shall be calculated presently. In order to facilitate comparisons with the calculation

of Kim and Millis we will present the zero temperature calculation and then recap the

results for the Keldysh form.

From equation (6.26) the self energy is

Σ1(p, ε) =
v2
F

4π2vpF

∫
d2q

∫ ∞

−∞

dω

ε+ ω − ξp+q + iδ sgn(ξp+q)

vq

|ω| + iaq
, (6.31)

where aq = vq(ξ2
0q

2 + h
2
3 ). We have used the explicit form for the coupling constant

g2 = 4π2v2
F/a

2E0vSF , where SF is the length of the Fermi surface in momentum space.

We will also define bq = aq/vF q.

Let us define B = ξ − ε and B+ = ξ − ε− iδ sgn(ξ). Then we may write

Σ1(p, ε) =
v2
F

4π2pF

∫
d2qq

{
lim

z→−B+
− lim

z→B+

}∫ ∞

0

dω
1

ω + iaq

1

ω + z︸ ︷︷ ︸
= 1
z−iaq ln[ z

iaq
]

. (6.32)

From the analytic structure of the integral over ω we see that the branch cut of the

logarithm is along the negative real axis for z. Taking the imaginary part of the self

energy only we have

iℑΣ1(p, ε) =
ivF

2πpF ξ2
0

∫ ∞

0

dxx

∫ π

−π
dθΘ[(ǫx − cos(θ)) cos(θ)]

cos(θ) − ǫx
(cos(θ) − ǫx)2 + b2x

.(6.33)

We have rescaled x = ξ0q, written ǫx = εξ0/vFx and linearized ξp+q ≈ vFp.q/|q|. We
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note that when we consider the scattering integral this linearization is invalid. We will

demonstrate later that there are no such problems with the self energy and the standard

linearization procedure works. The real part is

ℜΣ1(p, ε) =
vF

4π2pF ξ2
0

∫ ∞

0

dxx

∫ π

−π
dθ

2(cos(θ) − ǫx) ln[bx/(cos(θ) − ǫx)]

(cos(θ) − ǫx)2 + b2x

− bxπ sgn[cos(θ)]

(cos(θ) − ǫx)2 + b2x
. (6.34)

To calculate the imaginary part we first split the x integral into the two regions where

ǫx ≫ 1 and ǫx ≪ 1. Firstly the low momenta region can be checked. As ε ≪ ǫF we can

also take bx ≪ 1 in this region and hence we have

ℑΣ1((p, ε)|ǫx≫1 ≈ vF
2πpF ξ2

0

∫ |ε|ξ0
vF

0

dxx

∫ π

−π
dθΘ[(ǫx − cos(θ)) cos(θ)]

cos(θ) − ǫx
(cos(θ) − ǫx)2 + b2x

≈ − ε

pF ξ0

∫ |ε|ξ0
vF

0

dx
1

ǫ2x

(
1 − b2x

ǫ2x

)
+ · · ·

≈ −1

6
sgn(ε)

ε2

ǫF
+ · · · . (6.35)

Higher order terms will bring in dependence on the applied field h, but they are neglected

here as we are interested in h≪ 1. This result is the same as the inverse lifetime you find

for single particle excitations in a Fermi liquid, τ−1 ∼ ε2/ǫF , which can be found from

Fermi’s golden rule. However the remaining contributions from momenta between |ε|
vF

and

ξ−1
0 ≈ pF give more important corrections.

It is more advisable to remove the theta function by explicitly rewriting the limits of

the angular integral. We can write

ℑΣ1((p, ε) =
vF sgn(ε)

πpF ξ
2
0

[ ∫ |ε|ξ0
vF

0

dxx

∫ π/2

0

dθ
cos(θ) − |ǫx|

(cos(θ) − |ǫx|)2 + b2x
+

∫ ∞

|ε|ξ0
vF

dxx

∫ π/2

cos−1(|ǫx|)
dθ

cos(θ) − |ǫx|
(cos(θ) − |ǫx|)2 + b2x

]
. (6.36)

This expression is exact except for the linearization of ξ in the electron Green’s function.
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We will also substitute y = cos(θ) − |ǫx| to yield

ℑΣ1((p, ε) =
vF sgn(ε)

πpF ξ2
0

[ ∫ |ε|ξ0
vF

0

dxx

∫ 1−|ǫx|

−|ǫx|
dy

y

y2 + b2x

1√
(1 − [y + |ǫx|]2)

+

∫ ∞

|ε|ξ0
vF

dxx

∫ 0

−|ǫx|
dy

y

y2 + b2x

1√
(1 − [y + |ǫx|]2)

]
. (6.37)

The first of these terms will again give the Fermi liquid result τ−1 ∼ ε2/ǫF . However,

the second term also needs to be taken care of. The integral over x restricts ǫx to lie

between 0 and 1 and y is bounded between −|ǫx| and 0. We shall approximate the square

root as small (≪ 1) x and y are the most important terms:

1√
1 − [y + ǫx]2

≈ 1. (6.38)

Now

ℑΣ1(p, ε) = −sgn(ε)ε2

6ǫF
− vF sgn(ε)

2πpF ξ2
0

∫ ∞

|ε|ξ0
vF

dxx ln

[
(εξ0/v)

2 + (x3 + xh2/3)2

(x3 + xh2/3)2

]
. (6.39)

This integral over x can be calculated in the same limits as Kim and Millis used giving

ℑΣ1(p, ε) → − sgn(ε)

(
ε

h2/3

)2
1

πεF
ln

[
εF
|ε|

]
as ε→ 0 at h 6= 0 (6.40)

ℑΣ1(p, ε) → − sgn(ε)|ε|2/3ε1/3
F C as h→ 0 at ε 6= 0. (6.41)

C =

(
vF
v

) 2
3

1

π2
4
3

1

(ξ0pF )
4
3

∫ ∞

0

dxx ln[1 + x−6]

︸ ︷︷ ︸
= π√

3

(6.42)

In the limit h → 0 it gives the desired result, but in the limit ε → 0 it differs from what

Kim and Millis found. In both these limits the Fermi liquid like term can be neglected.

Note in the case h→ 0 we extend the lower limit of integration down to zero and subtract

the excess. This excess just gives higher order contributions which are neglected and the

remaining integral can be calculated.

We can also check that the quadratic q2 terms in the dispersion ξq do not contribute

to the self energy, within the appropriate approximations. This is necessary as we find
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that in the scattering integral we must include these terms. If we include them and repeat

the above calculation we will have

ℑΣ1(p, ε) = −vF sgn(ε)

πpF ξ2
0

{∫ |ε|ξ0
v

0

dxx

∫ −ǫx

1−ǫx+x
2

dy
y

y2 + b2
1√

1 − (y + ǫx − x/2)2

+

∫ 2

|ε|ξ0
v

dxx

∫ −ǫx

0

dy
y

y2 + b2
1√

1 − (y + ǫx − x/2)2

+

∫ 1+

√
1+

2|ε|ξ0
v

2

dxx

∫ x
2
−1−ǫx

0

dy
y

y2 + b2
1√

1 − (y + ǫx − x/2)2

}
. (6.43)

Large momentum terms can be shown not to contribute as expected and in these regions

the additional terms can safely be ignored as it should be small x and y which contribute

the most important terms.

From equations (6.40) and (6.41) we find the Keldysh self energy contributions. In

the limit ε→ 0 and with h 6= 0 we have

ℑΣ(p, ε) →




−
(

ε
h2/3

)2
1
πεF

ln

[
εF
|ε|

]
h̃(ε)2ℑΣR(p, ε)

0

(
ε

h2/3

)2
1
πεF

ln

[
εF
|ε|

]


 . (6.44)

In the limit h→ 0 with ε 6= 0 we have

ℑΣ(p, ε) →


−|ε|2/3ε1/3

F C h̃(ε)2ℑΣR(p, ε)

0 |ε|2/3ε1/3
F C


 . (6.45)

h̃(ε) is the bosonic distribution function as defined previously. We now address the dif-

ferences between our result derived above and the result of Kim and Millis. We believe

there is a simple flaw in their work which invalidates one limit of the lifetime. The limit

h→ 0 remains functionally unchanged. This standard result is robust to most variations

of the self energy and is caused by the form of the bosonic propagator.

To reproduce the results of Kim and Millis we will use a different method. Firstly we

use

P (q, ω) =
1

ξ2
0q

2 + |ω|/vq + h2/3
(6.46)
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for the bosonic propagator instead of

P (q, ω) =
1

ξ2
0q

2 − i|ω|/vq + h2/3
. (6.47)

It is simple to check that this is not the correct zero temperature form by comparison

with the result in the Keldysh formulation or by looking at the actual zero temperature

derivation of the propagator. Using the wrong propagator will not change the result for

the limits we are interested in (the limits ε → 0 and h → 0 are robust to this trivial

change) but will alter the numerical coefficients of the results. However, for the follow-

ing calculation we will work with the correct zero temperature form for the propagator.

This will highlight the differences with our method. The derivation with the alternative

propagator works in an identical way and we shall quote it at the end.

We will split the frequency integral of equation (6.31) into two regions 0 → ε and

ε → ∞. First let us examine the region ε → ∞, which we shall label Σ′. If we use the

approximation ω ≫ ε in this region we can write

Σ′(p, ε) =
v2
F

4π2pF

∫ ∞

0

dqq2

∫ π

−π
dθ

∫ ∞

ε

dω

ω + ia

[
1

ω − vF q cos(θ) + iδ
−

1

ω + vF q cos(θ) + iδ

]
. (6.48)

The validity of this approximation and a similar one used presently is an important issue

here and we shall discuss it at the end of this section. We are interested only in the

imaginary part, so after frequency integration we can rearrange this to give

Σ′(p, ε) =
ivF

4πpF

∫ ∞

0

dqq

∫ π

−π
dθ

cos(θ)

cos2(θ) + b2q

[
Θ[cos(θ) + ǫq] − Θ[cos(θ) − ǫq]

]
. (6.49)

Splitting the q integral into regions where ǫq > 1 and ǫq < 1 we can perform the angular

integration:

Σ′(p, ε) =
ivF

4πpF

∫ ∞

|ε|
vF

dqq ln

[
ǫ2q + b2q
b2q

]
. (6.50)

In the limit ε→ 0 this gives terms of higher than linear order. Hence it shall be neglected

in comparison with the terms from the remaining frequency region.
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Now for the other region. We will make the approximation ε≫ ω and write

Σ1(p, ε) ≈ v2
F

4π2pF

∫ ∞

0

dqq2

∫ π

−π
dθ

∫ ε

0

dω
1

ε− vF q cos(θ) + iδ sgn(ε)

1

|ω| + iaq

= − iv2
F

2π2pF

∫ ∞

0

dqq2

∫ π

−π
dθ

1

ε− vF q cos(θ) + iδ sgn(ε)︸ ︷︷ ︸
= 2π
vF q

sgn(ε)√
1−(ε/vF q)

2

tan−1

( |ε|
aq

)

≈ −ivF sgn(ε)

πpF ξ
2
0

∫ ∞

0

dxx

[
tan−1

( |ε|ξ0/v
x3 + xh

2
3

)]
. (6.51)

Again we have neglected the real part. In the limit ε→ 0 we find a linear ε dependence,

and not the dependence we found previously in equation (6.40). The necessary limits

leave us with:

ℑΣ1(p, ε) = −i ε
h

1
3

vF
2vpF ξ0

as ε → 0 at h 6= 0 and (6.52)

ℑΣ1(p, ε) = −i sgn(ε)|ε| 23 vF

2v
2
3pF ξ

4
3
0

as h→ 0 at ε 6= 0 (6.53)

for the self energy.

If we perform the same calculation with the incorrect propagator we will find

Σ1(p, ε) = − ivF
πpF ξ2

0

∫ ∞

0

dxx ln

[
εξ0/v + x3 + xh

2
3

x3 + xh
2
3

]
(6.54)

exactly as they have. (The calculation works in an identical way). This also has linear ε

dependence in the limit ε → 0. The required limits result in:

Σ1(p, ε) → − iε

h1/3

vF
πvpF ξ0

as ε→ 0 at h 6= 0 and (6.55)

Σ1(p, ε) → i sgn(ε)|ε|2/3 vF
√

3v
2
3pF ξ

4
3
0

as h→ 0 at ε 6= 0. (6.56)

As can be seen, these do not differ from using the correct propagator in any significant

way.

The problem with these calculations is the assumption that the region around ε is

unimportant in the frequency integral. However it is clear from the form of the electron

Green’s function, [ε+ ω − ξp+q + iδ sgn(ξ)]−1, that this is untrue. The problem is in fact

88



���
���
���
���
���

���
���
���
���
���

=
G0 G0G0 G0

P

(a) (b) (c)

++ + · · ·

Figure 6.3: The scattering vertex correction. We include contributions like diagrams (a)
and (b). (c) and other crossed terms are neglected.

neglecting the region ε → ∞; in other words, with neglecting Σ′(p, ε). The linear ε de-

pendence of the self energy derives from the region around ε in the ω integral. This should

be cancelled exactly by the term from this region in Σ′(p, ε). The problem arises because

it is falsely believed that this can be neglected in the approximation used. Furthermore

it is evident that if the main contributing region of integration to the result is the region

explicitly not being dealt with properly then the assumption is invalid.

6.5 Impurity Scattering

To find the resistivity we require the effect that the bosonic propagator has on dressing

the impurity vertices. The scattering is from static electronic impurities. We will discuss

the scattering integral only, as we are interested in the form of this work in the Keldysh

formulation. The calculation of the resistivity would follow in the same way[59].

We use the following expression for the resistivity (c.f. the Drude conductivity σ =

ne2τ/m)

ρres ∼ τ−1 = Γ, (6.57)

where Γ is the scattering width. This is because only the functional form of the resistivity

is derived, which is then fitted to the data using the parameters of the model. However, it

should be noted that this approach does not retain any information about the excitations

responsible for the conduction. Now the scattering width, Γ, can be written as[69]

Γ =

∫
dθ

2π
(1 + cos θ)|T (θ)|2 ≈ |T (0)|2. (6.58)
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Note that here θ is measured from backscattering. T is the well known T-matrix from

scattering theory which can be found from a Dyson’s equation using the renormalized

scattering amplitudes.

The required equation for the T-matrix is written in terms of the scattering integral

A. A is also referred to as the potential matrix and is defined in terms of the impurity

potential, V (r), as

A(p1,p2) =

∫
dre−ip1.rV (r)eip2.r. (6.59)

We consider how T , and hence also A, are dressed by the bosonic propagator. The

scattering integral is shown in diagram 6.3. For the T-matrix we have

T (θ − θ′, h) = A(θ − θ′, h) − iν0

∫
dθ1
2π

A(θ − θ1, h)T (θ1 − θ′, h). (6.60)

ν0 is the Fermi surface density of states as usual. It is clear from equation (6.60) that A

is the Born approximation of T . Resolving into angular momentum space we have

Tm =
Am

1 + iAmν0
where (6.61)

T (θ − θ′, h) =
∑

m

e−im(θ−θ′)Tm(h) and (6.62)

A(θ − θ′, h) =
∑

m

e−im(θ−θ′)Am(h). (6.63)

Now, as |Tm| ∼ ℑTm, we finally have

ρres ∼
∞∑

m=−∞
ℑTm = ℑT0 + 2

∞∑

m=1

ℑTm (6.64)

as the resistivity. This is the expression that Kim and Millis consider. We will consider

the scattering integral.

The lowest order correction to the scattering integral A, dressed by the metamagnetic

propagator P (q, ω), is figure 6.3(a) and is given by

A1(ε,p1,p2) = − iv2
FA0

4π2vpF

∫
d2q

∫
dωG(P1 −Q)P (Q)G(P2 −Q). (6.65)
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A0 is the bare scattering integral or potential matrix and is taken to be a constant. We

take P1,2 = (p1,2, ε) and Q = (q, ω). Crossed diagrams, such as diagram 6.3(c), are

neglected. Higher order noncrossed diagrams can be approximated as

An =
A0

n!

(
A1

A0

)n
. (6.66)

This is due to the result that A1 depends, approximately, only on the angle between p1 and

p2. Considering we are interested only in small momenta changes and |p1| ≈ |p2| ≈ PF

we can write the (backscattering) angle between p1 − q and p2 − q as the same as that

between p1 and p2. We will also consider the scattering integral to be defined on the

Fermi surface. Hence

A2(ε = 0,p1,p2) = − iv2
F

4π2vpF

∫
d2qdωG(P1 −Q)P (Q)

A1(ε− ω,p1 − q,p2 − q)︸ ︷︷ ︸
≈A1(0,p1,p2)

G(P2 −Q)

≈ −iv
2
FA

2
1(0,p1,p2)

4π2vpFA0
(6.67)

and so on for higher orders. We have

A(α, h) =
∑

n

An(α, h) (6.68)

for the total scattering integral, with α the backscattering angle.

6.5.1 Calculation of the Scattering Integral

We need to consider the Keldysh matrix structure of the vertex for the scattering integral.

In Keldysh this becomes, to the nth order,

Anij(p1,p2, ε) = − iv2
FA0

4π2vpF

∫
d2qdωγoimGmk(p1 − q, ε− ω)An−1

kl (p1,p2, ε)

Gln(p2 − q, ε− ω)γ̃pnjPop(q, ω). (6.69)
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Where

γ1 = γ̃2 =
1√
2


 1 0

0 1


 γ2 = γ̃1 =

1√
2


 0 1

1 0


 A0

ij = A0δij. (6.70)

Hence the first order integral to be done is

A1
11 = − iv2

FA0

8π2vpF

∫
d2qdω[GR(p1 − q, ε− ω)PK(q, ω)GR(p2 − q, ε− ω) +

GR(p1 − q, ε− ω)PR(q, ω)GK(p2 − q, ε− ω) +

GK(p1 − q, ε− ω)PR(q, ω)GA(p2 − q, ε− ω)] (6.71)

with A1
22 = [A1

11]
∗ and A1

21 = 0 as usual. We expect the Keldysh component to be zero

as we are considering an external potential, not an interaction vertex. This is confirmed

as A1
11 is real and A1

12 ∝ [A1
11 − A1

22]. This greatly simplifies equation (6.69) and we can

write

An(α, h) =
A0

n!

(
A1(α, h)

A0

)n
(6.72)

as for the zero temperature case discussed in the preceding section.

We define the integral I as

A1
11(α, h) = − iv2

FA0

4π2vpF
I(α, h). (6.73)

Thus, the necessary integral is the following:

I(α, h) =
1

2

∫
d2q

∫
dω
[

−2b(ω)[GR(P1 −Q)PR(Q)GR(P2 −Q)

−GR(P1 −Q)PA(Q)GR(P2 −Q)]

−2f(ε− ω)[GR(P1 −Q)PR(Q)GR(P2 −Q)

−GA(P1 −Q)PR(Q)GA(P2 −Q)]

+[2GR(P1 −Q)PR(Q)GR(P2 −Q)

−GR(P1 −Q)PA(Q)GR(P2 −Q)

−GA(P1 −Q)PR(Q)GA(P2 −Q)]
]
. (6.74)
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b(ω) is the bosonic distribution function. We will consider small temperatures and break

this integral into three stages. Firstly we perform the frequency integral for terms con-

taining the Fermi function f(ε − ω). We also define the notation: δ = 1, 2, η1 = 1 and

η2 = −1; and ξδ = ξ(pδ − q). Hence

If =

∫
d2q

∫ ∞

ε

dω
ivq

ξ1 − ξ2

∑

δ

ηδ
1

ε− ξδ + iaq

[
1

−ε+ ω + ξδ − iδ
− 1

−ε+ ω + ξδ + iδ

]

=

∫
d2q

2πvq

ξ1 − ξ2

∑

δ

ηδ
Θ(−ξδ)

ε− ξδ + iaq
. (6.75)

We deal with the terms including the bosonic distribution function, b(ω), in a similar way.

For this contribution we have

Ib =

∫
d2q

∫ 0

−∞
dω

ivq

ξ1 − ξ2

∑

δ

ηδ

{
1

ε− ξδ + iaq

[
1

εω − ξδ + iδ
+

1

ω + iaq

]

− 1

ε− ξδ − iaq

[
1

εω − ξδ + iδ
+

1

ω − iaq

]}

=

∫
d2q

2πivq

ξ2 − ξ1

∑

δ

ηδ

{
ε− ξδ

(ε− ξδ)2 + a2
q

[
1

π
ln

[
ε− ξδ
aq

]
− iπΘ(ε− ξδ)

]

+
aq
2

1

(ε− ξδ)2 + a2
q

}
. (6.76)

The remaining terms are given by

Ir =

∫
d2q

∫ ∞

−∞
dω

ivq

ξ1 − ξ2

∑

δ

ηδ

{
1

ε− ξδ + iaq

[
1

ε− ω − ξδ + iδ
+

1

ω + iaq

]

+
1

ε− ξδ − iaq

[
1

ε− ω − ξδ + iδ
+

1

ω − iaq

]

− 1

ε− ξδ + iaq

[
1

ε− ω − ξδ − iδ
+

1
ω + iaq

]}

=

∫
d2q

2πvq

ξ1 − ξ2

∑

δ

ηδ
ε− ξδ + iaq

. (6.77)

Collecting these three results, we find that

I =

∫
d2q

2πvq

ξ2 − ξ1

∑

δ

ηδ
1

(ε− ξδ)2 + a2
q

[
(ε− ξδ)

(
Θ[−ξδ] − 1 + Θ(ξδ − ε)

− i

π
ln

[
ε− ξδ
aq

])
+
iaq
2

sgn(ξδ)

]
. (6.78)
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α is the angle between −p1 and p2. We will also now set ε = 0 as we restrict ourselves

to energies on the Fermi surface.

We note that it is important to include terms of order q2 in ξδ. We describe the

result in the absence of these terms in section 6.5.2. We use the idea that |p1| ≈ pF and

p2 ≈ −p1 with α the angle measured from this backscattering position to write

ξ1 = vF q cos(θ) +
q2

2m
ξ2 = −vF q cos(θ + α) +

q2

2m
. (6.79)

Hence

I =
iv

v2
F

∫ ∞

0

dq

∫ 2π

0

dθ

[
1

cos(θ) + cos(θ + α)
+

1

cos(θ) + cos(θ − α)

]
1

[cos(θ) + q
2pF

]2 + b2q

×
[[

cos(θ) +
q

2pF

]
ln

(
b2q

[cos(θ) + q
2pF

]2

)
− πbq sgn

[
cos(θ) +

q

2pF

]]
. (6.80)

Now let us use the identity 2 cos(α) cos(α + β) = cos(β) + cos(2α + β) and shift the θ

integral by π/2. With xpF = q we find

I =
4ivpF
v2
F

∫ ∞

0

dx

∫ π
2

−π
2

sin(θ)

sin2(θ) − sin2(α
2
)

1

(sin(θ) + x
2
)2 + b2x

×
[(

sin(θ) +
x

2

)
ln

[
b2x

(sin(θ) + x
2
)2

]
− πbx

(
sin(θ) +

x

2

)]

≡ In + Im. (6.81)

In is the logarithmically divergent term we are interested in and Im, as will be shown, can

be neglected.

To see that Im is irrelevant set α = h = 0 (where In is divergent) and make the usual

approximations for small angle and momenta:

Im = −4πivpF
v2
F

∫ ∞

0

dxbx

∫ ∞

−∞
dy

1

y − x
2

sgn(y)

y2 + b2x
, (6.82)

now rearrange the y integral so the limits are 0 → ∞ and substitute u = y2. Then we

find

Im = −32πivpF
v2
F

∫ ∞

0

dx
ln[2x]

1 + 4x2
= 0. (6.83)
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For In we can write

In =
4ivpF
v2
F

∫ ∞

0

dx

∫ ∞

−∞

dy

2

y

y2 + b2
ln

[
b2x
y2

]

×
(

1

y − x
2
− sin(α

2
)

+
1

y − x
2

+ sin(α
2
)

)
. (6.84)

We can do the y integral by writing

1

2

∫ ∞

−∞
dy

1

y − γ

y

y2 + b2x
ln

[
b2x
y2

]
=

∫ ∞

0

dy
y2

y2 − γ2

1

y2 + b2x
ln

[
b2x
y2

]

= −
∫ ∞

0

du

√
u

u+ b2x

1

u− γ2
ln

[√
u

bx

]
(6.85)

and integrating on a contour which goes around a circle “at infinity” and above and below

the positive real axis where we place the branch cuts. Then

1

2

∫ ∞

−∞
dy

1

y − γ

y

y2 + b2x
ln

[
b2x
y2

]
=

∫ ∞

0

dy
y2

y2 − γ2

1

y2 + b2x
ln

[
b2x
y2

]
=
π2

2

γ

γ2 + b2x
.(6.86)

Combining this result with the necessary γs leaves us with

In =
2π2ivpF
v2
F

∫ ∞

0

dx

[ x
2

+ sin(α
2
)

(x
2

+ sin(α
2
))2 + b2x

+
x
2

+ sin(α
2
)

(x
2

+ sin(α
2
))2 + b2x

]
(6.87)

to integrate.

In the limits α → 0 and h→ 0 this is easy to calculate. If we consider small momenta,

where the main contributions to the integral are, we are left with

A1
11(α, h) = 2A0 ln

[
1

max(h
2
3 , α2)

]
. (6.88)

Summing up all the contributions leaves us with

A(α, h) = A0




1

max(h
4
3 ,α4)

0

0 1

max(h
4
3 ,α4)


 . (6.89)

The power in this expression will in general be dependent on the curvature of the Fermi

surface. This generalization can be simply introduced by parameterizing the dispersion as

95



ξq = vF q
2/2q0[59]. q0 parameterizes the curvature in the quadratic term in the dispersion

(it will not effect the linearized terms). We have concentrated on the case of a circular

Fermi surface and would expect different powers from the equivalent calculation of Kim

and Millis as we use a slightly different form for the propagator as discussed previously.

6.5.2 Calculation of the Linearized Scattering Integral

If we do not include the quadratic terms in the dispersion relation for the electrons, we

find a considerably different result. The logarithmic divergence is replaced by a power

law divergence in backscattering angle and applied field. We also destroy the symmetry

between these two parameters. First, let us see when the linearization of the dispersion has

any validity. From equation (6.80) we can see that, for the linearization of the dispersion to

be valid, we require the regions where cos(θ) ≫ q/pF to be the most important. However,

the important regions of the integrals are where both cos(θ) ≈ 0 and q/pF ≪ 1. The

difference with the self energy is that both quadratic dispersion terms and contributions

from the angular integral are neglected in the same approximation. We show the linearized

calculation here to demonstrate that linearization is invalid.

Linearizing the spectrum and taking p1 ≈ −p2, with p1 ≈ pF as before:

ξ1 = vF q cos(θ) ξ2 = −vF q cos(θ + α). (6.90)

Then we can write equation (6.78) as

I =

∫
d2q

ivq

ξ1 − ξ2

∑

δ

ηδ
1

ξ2
δ + a2

q

[
ξδ ln

(
a2
q

ξ2
δ

)
− πaq sgn(ξδ)

]
(6.91)

or, making the substitution θ′ = θ + α− π in the δ = 2 term,

I =
iv

v2
F

∫ ∞

0

dq

∫ 2π

0

dθ

[
1

cos(θ) + cos(θ + α)
+

1

cos(θ) + cos(θ − α)

]
1

cos2(θ) + b2q

×
[

cos(θ) ln

(
b2q

cos2(θ)

)
− πbq sgn[cos(θ)]

]
.(6.92)

Now, for the term containing a logarithm we can substitute w = tan(θ). By rearrang-
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ing the integral we have

Iln =
2iv

v2
F

∫ ∞

0

dq

∫ π

0

dθ
ln[b2/ cos2(θ)]

cos2(θ) + b2

{
1

1 + cos(α) − tan(θ) sin(α)

+
1

1 + cos(α) + tan(θ) sin(α)

}

≡ 2iv

v2
F

∫ ∞

0

dq[K ′(α) +K ′(−α)]. (6.93)

Hence, after the substitution,

K ′(α) = − 1

b2q sin(α)

∫ ∞

−∞
dx

ln[bq + ibqw] + ln[bq − ibqw]

(w − η)(w + iκ)(w − iκ)

=
2πη ln[bq +

√
(1 + b2q)]

b2q sin(α)κ(κ2 + η2)
− 2π tan−1[η]

b2q sin(α)(κ2 + η2)
︸ ︷︷ ︸

→0 as α→0∴ it is neglected.

. (6.94)

Where we have defined

κ2 =
1 + b2

b2
η =

1 + cos(α)

sin(α)
. (6.95)

This integral, equation (6.94), was performed in two parts. The

− 1

b2 sin(α)

∫ ∞

−∞
dx

ln[1 + x2]

(x− η)(x+ iκ)(x− iκ)
(6.96)

contribution was calculated by defining

J(c) =

∫ ∞

−∞
dx

ln[c2 + x2]

(x− η)(x2 + κ2)
(6.97)

and calculating dJ/dc then integrating with respect to c. The remaining terms can be

integrated directly. Now we can write

Iln =
16πiv

v2
F

∫
dq

ln[bq +
√

(1 + b2q)]

4b2q + α2

bq√
(1 + b2q)

(6.98)

for this contribution.
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For small momenta and applied field (b≪ 1) we can approximate Iln as

Iln ≈ 16πiv

v2
F

∫
dq

bq
4b2q + α2

ln[1 + bq]. (6.99)

Hence

Iln(α = h = 0) ≈ 4πi
√
v

v
3
2
F ξ0

∫ ∞

0

dx

x2
ln[1 + x2]

︸ ︷︷ ︸
=π

(6.100)

and we can safely neglect this contribution as the remaining terms, in equation (6.92),

contain divergences.

Keeping the α dependence explicit, in the remaining terms we have,

I = −πv
v2
F

∫
dqdθ

1

cos(θ) + cos(θ + α)

[
ibq sgn[cos(θ)]

cos2(θ) + b2q
− ibq sgn[− cos(θ + α)]

cos2(θ + α) + b2q

]
.(6.101)

If we shift the appropriate parts of the θ integral by π and α we can write this as

I =
2πv

v2
F

∫
dq

[∫ 3π/2

π/2

dθ
ibq

cos(θ) + cos(θ + α)

1

cos2(θ) + b2q
+

∫ 3π/2

π/2

dθ
ibq

cos(θ) + cos(θ − α)

1

cos2(θ) + b2q

]
. (6.102)

We split this into integrals such that

I ≡ 2πv

v2
F

∫
dq[ibq(K(α) +K(−α))]. (6.103)

Now we can calculate K(α):

K(α) =
1 + cos(α)

2b2q [1 + cos(α)] + sin2(α)

{
1√

1 + b2q
ln

[
1 +

√
1 + b2q

1 −√1 + b2q

]

−
√

2 + 2 cos(α) ln

[
1 +

√
2 + 2 cos(α)

1 −
√

2 + 2 cos(α)

]}
(6.104)

which for small angles gives

K(α) =
2

4b2q + α2

[
1√

1 + b2q
ln

(
1 +

√
1 + b2q

1 −√1 + b2q

)
− ln

(
16

α2

)]
. (6.105)
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This integral was performed by the series of substitutions: w = tan(θ); u = w−2; and

1 + u = y2. Hence we find

I =
2πv

v2
F

∫
dq

4ibq
4b2q + α2

[
1√

1 + b2q
ln

(
1 +

√
1 + b2q

1 −√1 + b2q

)
− ln

(
16

α2

)]
(6.106)

for this integral.

The most important parts of this integral come from small momenta so we may ap-

proximate b≪ 1 in the integral, thus

I ≈ 8πiv

v2
F

∫ ∞

0

dq
b

4b2 + α2
ln

[
α2

4b2

]
. (6.107)

Setting h→ 0 and rescaling we find equation (6.107) to be

I(α > h→ 0) =
4πiv

√
vF

ξ0v
2
F

√
(2v)

1√
α

∫ ∞

0

dx
x2

1 + x4
ln

[
1

x4

]
∝ i

vF ξ0

1√
α
. (6.108)

The integral is just a number and we have found a power law divergence. Setting α → 0

in equation (6.107) (where we can) we find

I(h > α→ 0) =
π2i

vF ξ0

1

h
1
3

ln

[
α2

h
2
3

]
, (6.109)

as h→ 0. Hence for the first order linearized scattering integral we have

A1
11(α > h = 0) =

πA0
√
vF

4pF ξ0
√
v

1√
α

(6.110)

A1
11(h > α→ 0) = − A0v

2pF ξ0vF

1

h
1
3

ln

[
h

2
3

α2

]
. (6.111)

The symmetry between backscattering angle and applied field has been destroyed in this

regime. We also have a considerably worse divergence. This demonstrates the importance,

in contrast with the self energy term, of including quadratic dispersion elements.

99



6.5.3 Comparison with Kim and Millis’ Scattering Integral

Kim and Millis find the result to be

A1(α, h) = −A0 I

(
2πq0
2πpF

)
ln[max(h

2
3 , α2)]. (6.112)

Where I is an integral depending on the shape and size of the Fermi surface given by

I(b) =
2b

π

∫ ∞

0

dy

2by√
3

(1 + y3)
[(

2b√
3

)2
+ y4

] . (6.113)

q0 parameterizes the curvature of the Fermi surface. Summing all orders leaves the power

law

A(α, h) = A0
1

[max(h
2
3 , α)]I

. (6.114)

With, for a circular Fermi surface, I ≈ 0.23[59]. We differ from this result only in terms

of the power law due to using different forms for the bosonic propagator. We have also

neglected the considerations of parameterizing the curvature of the Fermi surface.

Using equations (6.61), (6.64) and (6.114) the residual (in other words zero tempera-

ture) resistivity is calculated. This is measured and calculated as a function of the applied

field. Their results, shown in figure 6.4, give the peak in the resistivity. From the height

of the peaks they claim they require a value for I of ≈ 0.75. However, this is not a fit of

the shape of the plots. Note that these plots are of the residual resistivity as we are at

zero temperature. Experimental data[52] is given in figure 6.5.

6.6 Summary

Summarizing, in this chapter we have addressed a phenomenological model for metam-

agnetic quantum criticality. We presented what assumptions were necessary to derive

this model. Following this we looked at the self energy and corrections to the scattering

amplitude in such a model, which was presented in the Keldysh technique. We found

some differences between our approach and that of Kim and Millis in the original paper.
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Figure 6.4: From [59], the residual resistivity calculated by Kim and Millis. The different
lines refer to different values of I. I = 1 are the dashed lines, I = 0.75 are the solid lines
and I = 0.5 are the light solid lines. The three panels are for different initial scattering
amplitudes: (a) is A0ν0 = 0.5, (b)is A0ν0 = 1.0 and (c) is A0ν0 = 5.0.
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Figure 6.5: From [52], the residual resistivity (triangles). Also plotted is the coefficient A
in the formula ρ = ρres + AT 2.
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Chapter 7

CONCLUSION

7.1 Discussion of the Coulomb Blockade

In the first half of this thesis we have found expressions for the tunnelling density of

states and the conductance of a quantum dot using the Keldysh technique. We began by

introducing the concepts involved with mesoscopic physics and the interplay of electron-

electron interactions and interference due to disorder. Specifically, we consider the zero-

bias anomaly in quantum dots. We show how this can be perturbatively explained by

considering the lowest order corrections due to the interaction and disorder averaging.

This is generalized to the nonequilibrium Keldysh diagrammatic technique. For tempera-

tures below the charging energy, Ec ∼ e2/C, this perturbative technique becomes invalid

and we need to consider the zero-momentum interaction mode nonperturbatively.

This effect, caused by the dominant zero momentum mode, is the Coulomb blockade.

The first part of this thesis is dominated by our explanation of this phenomenon. Our

approach is to consider a functional integral representation for the single particle Green’s

function. The interaction can be dealt with by introducing a Hubbard-Stratonovich trans-

formation which allows us to deal exactly with most parts of the bosonic field categorizing

the interaction. The exact manipulation can be performed either with a gauge transfor-

mation or by direct integration. However, it is not possible to deal exactly with the

zero-mode of the bosonic field. By zero-mode we here refer to, in the Matsubara tech-

nique, the zero frequency component. It is not possible to remove this component by the

gauge transformation. In the Keldysh technique the analogous part of the bosonic field

is the integral over the interaction contour of the field.
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Previous calculations[24, 35] apply saddle point approximations to the bosonic field’s

zero-mode. We demonstrate how to do this in our calculation to explain the differences

in the approaches. We also consider an alternative derivation which highlights the inter-

pretation of the result of the Green’s function. This is expressed as a sum over N -particle

canonical ensembles.

The saddle point solution we use has an infinite number of solutions. We note that

it is important to include the whole set of saddle point solutions for the Green’s function

to correctly describe the necessary phenomena. This has not been correctly taken into

account by Kamenev and Gefen in their formulation[24]. A different attempt by Efetov

and Tschersich[35] correctly describes the behaviour at the Coulomb peaks but not in the

valleys. This includes the infinite number of saddle point solutions in terms of winding

numbers of the gauge field introduced.

From the single particle Green’s functions we have the tunnelling density of states.

The use of the full saddle point solution gives us a previously unknown effect of the

Coulomb blockade. At the peak sites we discover that the tunnelling density of states is

suppressed to half of the free particle density of states. Previously it had been thought

that it is flat at the peaks (and of the free particle value). In the valleys we find the

tunnelling density of states is fully suppressed, as is expected.

In the calculation of Kamenev and Gefen, the Coulomb blockade is not properly ac-

counted for. The suppression of the density of states they find is the remnant of the high

temperature, T ≫ Ec, zero-bias anomaly. In this limit we recover their result exactly.

This can also be seen by checking the result for the average number of particles on the dot.

Their saddle point solution describes a linear change of 〈N〉 with changing gate voltage.

We can also consider the behaviour of the average number of particles on the dot,

〈N〉, with changing gate voltage. We find that, as the gate voltage is altered, the average

particle number jumps suddenly by one. This occurs at the values Ec(n + 1/2), as is

expected. ({n} are the integers.) This is plotted in figure 1.3.

Furthermore, to correctly gain the expression for conductance (compare with [8]) we

need to correctly describe the tunnelling density of states at the degeneracy point (the

half gap). We consider the model of two quasi-one dimensional wires weakly coupled to

the quantum dot. We require weak coupling to ensure that the particle number on the
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dot remains a good quantum number. The one dimensional wires are treated as reservoirs

in equilibrium, and we are interested in the steady state current.

To summarize, we consider the zero-bias anomaly and the role of the zero-momentum

mode of the interaction. We then calculate the Green’s function for an isolated quantum

dot. From this we find novel behaviour of the tunnelling density of states and derive the

differential conductance across an almost closed dot.

7.2 Discussion of the Metamagnetic Quantum Criti-

cal Point

In the second part of this thesis we have addressed the phenomenon of metamagnetic

quantum criticality. We briefly introduce the idea of a quantum critical point and quantum

critical endpoints. These were first introduced by Hertz[46] in 1976. The models we are

interested in were brought back to prominence by Millis[55] in 1993.

The introduction of a quantum critical point referred to the specific case of metam-

agnetism. This is a magnetic phase transition which consists of a discontinuity in the

magnetization at a specific applied field strength. The system starts as a paramagnet

at low applied fields. For the case we are interested in this is around 7 Tesla. The

metamagnetic phase transition is first order and has an end point at a finite temperature.

Metamagnetism is a phenomenon observed in the crystal Sr3Ru2O7, and we present

the experimental evidence for this case. It can also be shown that the critical end point of

the metamagnetic phase transition can be tuned to zero temperature. This is performed

by changing the angle of the applied magnetic field with the crystal. When the field

approaches being perpendicular to the planes, the critical end point goes toward absolute

zero and we have a quantum critical end point. It is the behaviour around this quantum

critical end point that we are interested in.

The model we are considering consists of electrons with a spin density interaction

which is thought to describe the metamagnetic quantum critical point. We demonstrate

how this model is derived and show the resulting action and the bosonic propagators

which describe its excitations.

This metamagnetic model is modified by Kim and Millis[59] by coupling these excita-
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tions with free electrons in the system. Though strictly speaking this model double counts

the number of electrons in the system we demonstrate what assumptions are necessary to

derive it by assuming that there exist two classes of electrons in the material. We require

that these electrons interact via a spin density interaction. Also one set of electrons must

be otherwise free and the other set interact with a spin density interaction. The second

set of electrons gives rise to the usual metamagnetic bosonic action. The first set, which

must exist in the a-b planes of the material, should be the electrons which are involved

in the transport measurements. Most importantly the two classes of electrons, A and B,

must be uncorrelated such that 〈ψ̄AψB〉 = 0 and 〈ψ̄BψA〉 = 0.

We re-calculate the results for this model using the Keldysh diagrammatic technique.

However we believe there to be several mistakes in their calculation. One trivial error

leads to incorrect numerical coefficients for some results. This is the use of the incorrect

zero temperature form for the bosonic propagator. They incorrectly move from the finite

temperature Matsubara form (in which their model is derived) to the zero temperature

form.

However, a more important problem is a mistake in their derivation of the self energy

correction to an electron interacting with the bosonic field. From the self energy we

find the lifetime of the quasiparticle for the system. They use an approximation which

mistreats one of the most important parts of the frequency integral. This gives the

correct lifetime in one limit (applied field h = 0 and frequency ε 6= 0) but not in the other

(frequency ε → 0 and applied field h 6= 0). In the second limit we calculate that the

lifetime is ∼ −(ε/h
2
3 )2 ln(ε). This is a modified Fermi liquid result which simply gives a

quadratic dependence on frequency. However, they find that the lifetime is ∼ ε/h
1
3 .

Further to this, we consider the effect of the metamagnetic propagator on the scattering

integral, and it is found to give a power law divergence. This divergence is in either the

angle from backscattering between incoming and outgoing electrons, or in the applied

field measured from the metamagnetic phase transition. We agree with the result of Kim

and Millis which we calculate using the Keldysh formalism, and we note the importance

of not linearizing the electron dispersion in this scattering integral.
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Appendix A

CONDUCTIVITY

The quantum mechanical expression for current[18] is given by

ĵ(r) = ĵ(r, r′)|r=r′

=
ie

2m
[(∇r −∇r′)|r〉〈r′|]r=r′. (A.1)

Now, using the matrix elements for jnm we obtain

jnm(r) = 〈n|̂j(r)|m〉

=
ie

2m
{[∇ψ∗

n(r)]ψm(r) − ψ∗
n(r)[∇ψm(r)]}. (A.2)

We now wish to use linear response theory to express this in terms of free particle Green’s

functions and the vector potential.

The Hamiltonian for an electron in a vector potential A is substituted into the formula

for the Green’s function and S is then expanded to linear order in A. (It is also possible

to find linear response from the Kubo formula[56].)

For a metal in an electric field E the current is j = σE. Using basic electrodynamic

formulae

jω = iωσAω, (A.3)

jω = −Q(p, ω)Aω and (A.4)

Q(p, ω) = −iωσ, (A.5)
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for the kernel Q, the conductivity is found from the current density in momentum space.

As the Green’s function for a particle in an electric field is:

G(x, x′) = −i〈T ψ̂H(x)ψ̂†
H(x′)〉; (A.6)

= −i〈TS(∞)ψ̂(x)ψ̂†(x′)〉
〈S(∞)〉 , (A.7)

with S(∞) = T exp
(
− i

∫ ∞

−∞
Hi(t

′′)dt′′
)
, (A.8)

Hi =
1

2

∫
drj.A (A.9)

and j.A = − ie

2m
A.(∇r −∇r′)r′→r[ψ(x)ψ†(x′)]t′→t +O(A2). (A.10)

Hence we can write the current of the system, J, as

J(x) = − ie2

2m2
(∇r′ −∇r)r′→r[G(x, x′)]t′→t. (A.11)

Expanding S and applying wick’s theorem, to linear order in A, we find

J(x) = − ie2

2m2
(∇r′ −∇r)r′→r

∫
d4yA(y)(∇y −∇y′)y′→yG(x, y′)G(y, x′)

−Ne
2

m
A(x). (A.12)

Where y = (y, t′), y′ = (y′, t′) x = (r, t) and x′ = (r′, t). After Fourier transforming, the

conductivity can be extracted as

σ(k, ω) =
iNe2

ωm
+

2e2

ωm2

∫
ddp′

(2π)d
dǫ

2π
pp′〈G(p+,p

′
+; ǫ+

1

2
ω)G(p′

−,p−; ǫ− 1

2
ω)〉i.(A.13)

p± = p±k
2
. We have now included impurity averaging explicitly and the Green’s functions

include an impurity potential. As the impurity averaging has not been performed yet the

system is not spatially invariant and so momentum is not conserved. (This is why the

Green’s functions have two momenta coordinates but only one frequency coordinate.)

Labelling

Ξ(P+, P−) =
1

(2π)3

∫
G(p+,p

′
+;ω+)G(p′

−,p−;ω−)p′dp′ (A.14)
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Figure A.1: Conductivity contributions. The cooperon sum is (d). (c) shows the contri-
bution for the Drude conductivity σ0.
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Figure A.2: Conductivity contribution from a cooperon, the sum in figure A.1(d). Sums
over all such crossed diagrams is implied.

we can perform impurity averaging on this object and use Dyson’s equation to sum the

low order contributions. This leads to the equation[37]:

Ξ(P+, P−) = G(P+)G(P−)

[
p +

1

(2π)3

∫
|u(p− p′)|2Ξ(P ′

+, P
′
−)dp′

]
. (A.15)

With u the impurity potential. This integral can be calculated in the normal skin effect,

ν|k| ≪ 1/τ [37, 56].

Having performed impurity averaging for the conductivity diagram, see figure A.1, via

the above method we have for the lowest order correction

σ =
2ie2

m2

1

τ

1

ω + i
τtr

∫
ddp

(2π)d
dǫ

2π
p.p′G(p′+)G(p′−). (A.16)

With τtr the transport lifetime: a phenomenological constant associated with the above

calculation of Ξ. This will give the Drude conductivity.

It has been shown that the maximally crossed diagrams, figure A.1(d), give a singular

contribution which we are interested in here. The maximally crossed diagrams can be
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rewritten as a cooperon contribution. With ω ≈ 0, static response, the cooperon will

simply give a contribution like 1/q2, from section 2.2.2. See figure A.2, and so this is

given by

σ =
2e2

πLd

∑

q

1

q2
. (A.17)

The green’s functions in the diagram can be trivially integrated out to lowest order.
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Appendix B

EQUIVALENT DIAGRAMS FOR THE

DIFFUSONS AND COOPERONS

In this appendix we present some equivalent diagrams which are used for the Diffuson and

Cooperon modes, labeled D and C respectively. See figure B.1. Also given is an identical

form for a scattering event that has been used. Note that the points for a scattering event

are concurrent in position but not necessarily in time. (Averaging over disorder gives delta

functions in space as the correlated scattering events are off the same immobile impurity

but they can happen at different times.)

The ladder diagram for the diffuson is then figure B.2. Which is

CD
GRGR

GR

GRGR
GR

GAGA

GA

GAGA

GA

p

p

p

p

p + q
p + q

p′

p′

p′

p′

−p′ + q

−p′ + q
−p + q

−p + q

p′ + q

p′ + q

=

= =

Figure B.1: Further diffuson and cooperon diagrams.
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GRGR

GAGA

GR(p)

GA(p + q)

GR(p′)

GA(p′ + q)

GR(p′′)

GA(p′′ + q)

p

p + q

p′

+ + +. . .
p′ + q

=

Figure B.2: Diffuson ladder diagram.

D(q, ω) =
1

2πνdτ
+

1

2πνdτ
K0

1

2πνdτ
+

1

2πνdτ
K0

1

2πνdτ
K0

1

2πνdτ
+ · · ·

=
1

2πνdτ

∞∑

n=0

1

n!

(
K0

2πνdτ

)n

=
1

2πνdτ 2(Dq2 − iω)
. (B.1)
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Appendix C

DERIVATION OF THE POLARIZATION

OPERATOR

The polarization operator is defined as

Πkk′(x, x′) = 2iγ̃kj′i′〈Gi′i(x, x
′)Gjj′(x

′, x)〉γk′ij . (C.1)

Now to check that this has the correct Keldysh form we wish to check that Π21 = 0. This

is trivial to perform by Fourier transforming with respect to time and noting that

Π21(x, x′) = i〈
∫
dε[G11(r, r

′; ε)G11(r
′, r; ε+ ω)

+G22(r, r
′; ε)G22(r

′, r; ε+ ω)]〉 = 0, (C.2)

by the analytic properties of the advanced and retarded Green’s functions.

Now, the retarded component of the polarization operator is

Π11(x, x′) = i〈GR(x, x′)GK(x′, x) +GK(x, x′)GA(x′, x)〉i. (C.3)

The advanced component will simply be the complex conjugate of this. After Fourier

transforming with respect to (t− t′), as G(x, x′) = G(r, r′; t− t′), this becomes

∫
dε

2π

(
GR(ε)GA(ε+ ω)[h(ε) − h(ε+ ω)] + h(ε+ ω)GR(ε)GR(ε+ ω)

−h(ε)GA(ε)GA(ε+ ω)
)
. (C.4)
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For clarity we have dropped the position dependence (which is easy to put back provided

we respect the order of the Green’s functions) and the impurity averaging. By Taylor

expanding we can use, for small ω, h(ε)−h(ε+ω) ≈ −ω∂εh(ε). As h is a step like function

its derivative will simply set the boundaries on the integral over ε. Then, integrating the

first term of equation (C.4) leads to

− ω

2π
[GR(ε)GA(ε) + ω)h(ε)|∞−∞] +

ω

2π

∫
dεh(ε)

∂

∂ε
[GR(ε)GA(ε+ ω)]. (C.5)

The impurity averaging and momentum integration for the first of these two terms has

already been calculated for the diffuson. The second and third terms of equation (C.4) are

calculated by using the step like properties of the distribution functions and the property

∂εG
R/A(ε) = −[GR/A(ε)]2. ω is set to zero in these terms as we are only interested in the

behaviour for small frequencies.

Thus we now have

Π11(q, ω) = νd +
iωνd

Dq2 − iω

+
iω

2π

∫
dd(r − r′)eiq.(r−r′)〈

∫
dεh(ε)∂ε[G

R(r, r′; ε)GA(r′, r; ε+ ω)]〉.(C.6)

The last term has an integrand of order ε−3 as ε→ ±∞ and so is neglected in comparison

with the first two terms. Hence

Π11(q, ω) =
Dq2νd

Dq2 − iω
(C.7)

is the retarded component of the Polarization operator.

For the Keldysh component we have

Π12(r − r′, ω) = i

∫
dε

2π
〈GR(ε)GA(ε+ ω) +GA(ε)GR(ε+ ω) +GK(ε)GK(ε+ ω)〉.(C.8)

We can rearrange this into

Π12(r − r′, ω) = i

∫
dε

2π
[h(ε)h(ε+ ω) − 1]〈(GR −GA)ε(G

R −GA)ε+ω〉. (C.9)

114



Performing this integral and the impurity averaging, which is the previously calculated

〈GRGA〉i, we have

Π12(q, ω) =
1

ω

∫
dε[1 − h(ε)h(ε+ ω)]

︸ ︷︷ ︸
≡I(ω)

[ΠR(q, ω) − ΠA(q, ω)] (C.10)

for the Keldysh component of the polarization operator.
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Appendix D

KELDYSH VERTEX CORRECTIONS

The Keldysh vertices can be rewritten to include the scattering from impurities across

Green’s functions either side of the emitted or absorbed Coulomb propagator. The ab-

sorption vertex Γkij is

Γ1(q, ω; ε) =
1√
2


 1 h(ε+ω)−h(ε)

(Dq2−iω)τ

0 1


 and (D.1)

Γ2(q, ω; ε) =
1√

2(Dq2 + iω)τ



−h(ε+ ω) 2(h(ε+ω)h(ε)−1)
(Dq2−iω)τ

1 h(ε)



 . (D.2)

The emission vertex Γ̃kij is

Γ̃1(q, ω; ε) =
1√

2(Dq2 − iω)τ


−h(ε − ω) 2(h(ε−ω)h(ε)−1)

(Dq2+iω)τ

1 h(ε)


 and (D.3)

Γ̃2(q, ω; ε) =
1√
2


 1 h(ε−ω)−h(ε)

(Dq2+iω)τ

0 1


 . (D.4)

However in practice it is often easier not to use these averaged vertices but to construct

the diagrams from the basic elements and unavereged vertices which have a simpler struc-

ture. Impurity averaging can then be performed which can not alter the Keldysh matrix

structure.

The above are calculated in a similar way to zero temperature vertex corrections,

simply including the matrix structure and distribution functions of the Keldysh method.
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Appendix E

THE HUBBARD-STRATONOVICH

TRANSFORMATION

The Hubbard-Stratonovich transformation can be used to transform quartic terms in

the functional integral action and replace them with quadratic terms, at the expense of

introducing a new field to integrate over. We also note some subtle issues associated with

the requirement that our Hamiltonian is normal ordered before we derive the functional

integral.

The Hubbard-Stratonovich transformation for a general normal ordered interaction,

1
2
Tr[ψ̄ψ̄V ψψ], is

∫
Dφ

N e−
i
2

TrφV −1φ+iTr ψ̄φψ =

∫
Dφ

N e−
i
2

Tr[φ−ψ̄ψV ]V −1[φ−V ψ̄ψ]e−
i
2

Tr ψ̄ψ̄V ψψ

= e−
i
2

Tr ψ̄ψ̄V ψψ. (E.1)

(Matrix multiplication is implied over all arguments of the necessary fields.) Note that

if ψ is a fermionic field then it is required that φ is bosonic and it must obey periodic

boundary conditions on the appropriate time contour.

In our method for re-exponentiating after performing the functional integrals, see

equation (2.71) we need to be careful. If we do not include terms up to the correct order

we introduce additional unwanted terms, or rather fail to cancel unwanted terms which

should not be present. Consider the toy Hamiltonian 1
2
Eĉ†ĉ†ĉĉ. The partition function is

clearly, due to the fermionic properties of ĉ,

Z = Tr e
1
2
Eĉ†ĉ†ĉĉ = Tr e0 = 2. (E.2)
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In terms of the functional integral this becomes

Z =

∫
DψDψ̄ei

∫
c dt(ψ̄i∂tψ−

1
2
Eψ̄2ψ2) (E.3)

=

∫
Dφ

Nφ

e
i

2E

∫
c
dtφ2

∫
DψDψ̄e−

∫
c
dt(ψ̄∂tψ−iφψ̄ψ)

︸ ︷︷ ︸
1+
∏
i(1+iδiφi)

. (E.4)

Here k labels the time segments on the contour c. If we ignore second order terms and

re-exponentiate the product over k we get

Z = 1 + e−
βE
2 ! (E.5)

This is clearly wrong and the problem lies in ignoring second order terms when we re-

exponentiate. If, instead of writing

∏

i

(1 + iδiφi) ≈
∏

i

eiδiφi = e
∑
i iδiφi , (E.6)

we write

∏

i

(1 + iδiφi) ≈
∏

i

eiδiφi+
(δiφi)

2

2 = e
∑
i[iδiφi+

(δiφi)
2

2
], (E.7)

which removes the second order terms, we can rectify this problem. However the term δ2
i

has no meaningful continuum limit.

If we use this form which corrects the second order terms we obtain

Z = 1 +

∫
Dφ

Nφ

e
i

2E

∑
i δi(1−iEδi)φ2

i+i
∑
i δiφi. (E.8)

Making the substitution φi → φi(1 − iEδi)
1
2 and using

∏

i

(1 − iEδi) = e
∑
i ln(1−iEδi) ≈ e

∑
i(−

iEδi
2

) = e
Eβ
2 (E.9)
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we find

Z = 1 +
∏

i

(1 − iEδi)

∫
Dφ

Nφ
e

i
2E

∑
i δiφ

2
i+i

∑
i δiφi (E.10)

= 1 + e
Eβ
2 e−

Eβ
2 = 2 (E.11)

as required.

The problem described above is caused by φi ∼ (E/δi)
1/2, where δi is a time segment,

hence (φiδi)
2 is required to get the terms of order δi. We can conveniently fix this problem

by considering the interaction in normal ordered form.

Putting the interaction into normal ordered form gives the following interaction to be

removed via a Hubbard-Stratonovich transformation (note it must be put into normal

ordered form to derive the functional integral expression).

eiSint = e−i
∫
dtEc

2
N2

→ e−i
Ec
2

∑N
i=0 δi(−ψ̄i+1ψ̄i+1ψiψi+ψ̄i+1ψi) (E.12)

=
∏

i

∫
dφi
Ni

e−
iδi
2Ec

φ2
i+(δiφi−δ2i φ2

i /2)ψ̄i+1ψi

=
∏

i

∫
dφi
Ni

e−
iδi
2Ec

φ2
i (1−iδiEcψ̄i+1ψi)+δiφiψ̄i+1ψi

=
∏

i

e
1
2

ln(1−iδiEcψ̄i+1ψi)e−i
Ec
2

(ψ̄i+1ψi)2δi

∫
dφi
Ni

e−
iδi
2Ec

(φi+iEcψ̄i+1ψi)2

=
∏

i

e−iδi
Ec
2
ψ̄i+1ψi−iδi Ec2 (ψ̄i+1ψi)2 as required. (E.13)

This gives for the partition function

Z =

∫
Dφ

N e−
∑
i

iδiφ
2
i

2Ec

∫
Dψe−

∑
i ψ̄i+1[1−iδiξ−δiφi+δ2i φ2

i /2]ψieψ̄0ψ0−
∑N−1
i=1 ψ̄iψi

=

∫
Dφ

N e−
∑
i

iδiφ
2
i

2Ec

∏

k

[1 + Πi(1 − iδiξk + δiφi − δ2
i φ

2
i /2)]

=

∫
Dφ

N e−
∑
i

iδiφ
2
i

2Ec

∏

k

[1 + e
∫
c dt(φ−iξk)]. (E.14)

The sum over the state label k is suppressed in the first line for clarity. Notice that, as

the fermionic integral gives an expression of second order, we can re-exponentiate without
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causing any problems.

120



Appendix F

GAUGE TRANSFORMATIONS IN FUNCTIONAL

INTEGRALS

The following is a demonstration, in both the continuous and discrete representations,

of why it is not possible to “gauge out” the entire Bosonic field in the one dimensional

problem. No such issue arises in, for example, the one dimensional system of a Luttinger

Liquid.

F.1 Jacobian for Grassmann Variables

Due to the equivalence of integration and differentiation with Grassmann variables the

Jacobian associated with a change of Grassmann variables in an integral is

J−1 =

∣∣∣∣∣Det

(
∂ψi
∂ψ′

j

)∣∣∣∣∣. (F.1)

Where the change of variables is {ψi} → {ψ′
i}. This can be easily proved by induction.

Now, where we have two independent sets of fields, as in the functional integrals we

are looking at, we will find

∫
DψDψ̄ . . . =

∫
Dψ′Dψ̄′J . . . (F.2)

J−1 =

∣∣∣∣∣Det

(
∂ψi
∂ψ′

j

)∣∣∣∣∣

∣∣∣∣∣Det

(
∂ψ̄i
∂ψ̄′

j

)∣∣∣∣∣ =
∏

i

[e−ℑθi−ℑχi] for (F.3)

ψi = ψ′
ie
iθi and (F.4)

ψ̄i = ψ̄′
ie
iχi . (F.5)
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For any instance we will be interested in χi = −θi and the Jacobian will be 1. All other

possibilities will give highly complicated actions and we wish the gauge field to cancel

from the action (as far as possible).

F.2 The Discrete Case

First let us look at the issue in the discrete notation. We have the following action

ψ̄0ψ0 −
N∑

i=1

ψ̄iψi +
N∑

i=0

ψ̄i+1ψi[1 − i(ξ + iφi)δi] (F.6)

where the field ψN+1 is defined as −ψ0 so that we can write a continuous notation (and

similarly for ψ̄N+1.) It is important that we only really have the fields from i = 0 . . . N .

Making the gauge transformation ψi → ψie
iθi and ψ̄i → ψ̄ie

−iθi we have

ψ̄0ψ0 −
N∑

i=1

ψ̄iψi +
N∑

i=0

ψ̄i+1ψi[1 − i(ξ + iφi)δi]e
iθi−iθi+1. (F.7)

Assuming θ is a smooth function we can expand the exponent eiθi−iθi+1 and, demanding

iθi − iθi+1 ∼ δi, we get the following condition for removing the field φ:

θi − θi+1

δi
= −iφi. (F.8)

We require a smooth function θ which satisfies this condition. Additionally we have a

term θN+1 which we would like to satisfy some boundary conditions. This is because the

term is introduced only to define equation(F.8) properly. When the field θ is introduced

it is with ψ0...N but there is no actual ψN+1. Let θN+1 = θ0(+2πn) + θ′, if θ′ = 0 the

boundary condition ψN+1 = −ψ0 will be satisfied but it may not be possible to find a

field θ which does this. Note from the above that θ′(+2πn) = i
∑

i δiφi.

We now have, in discrete notation,

ψ̄0ψ0 −
N∑

i=1

ψ̄iψi +
N−1∑

i=0

ψ̄i+1ψi[1 − i(ξ + iφi)δi]e
iθi−iθi+1 −

ψ̄0ψN [1 − i(ξ + iφi)δi]e
iθN−iθ0−iθ′ (F.9)
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which gives

ψ̄0ψ0 −
N∑

i=1

ψ̄iψi +

N−1∑

i=0

ψ̄i+1ψi[1 − iξδi] − ψ̄0ψN [1 − iξδi]e
−iθ′. (F.10)

So we have gauged out the field except for one anomalous term. Were this term to be

zero then clearly the bosonic field φ would be completely separable from the fermionic

action (and would not appear in the partition function at all). An analogous calculation

can be performed in the continuous notation. This shall be done in the next section.

The anomalous term can be included in the discrete calculations done previously in

section 2.4.3 leaving

Z = −
∫

(DN+1ψ)e−ψ̄Dψ (F.11)

= detD = 1 +

N+1∏

k=1

ake
−iθ′ (F.12)

= 1 + e−i
∫
c dtξ−iθ′ = 1 + e

∫
c dt(φ−iξ) (F.13)

as before (suppressing the product over states m of ξm).

For the Green’s function we can do the same:

iG(t, t′) = −eiθi−iθj
∫

(DN+1ψ)e−ψ̄Dψψiψ̄j (F.14)

= eiθi−iθj





i+1∏

k=j

ak if i > j

−
i−1∏

k=1

N+1∏

j

ake
−iθ′ if i < j

(F.15)

= eiθ(t)−iθ(t
′)





e−i
∫ t
t′ ξdt

′′
if t > t′

−e−i
∫ t
t0
ξdt′′−i

∫ tN+1
t′ ξdt′′

e−iθ
′

if t < t′
(F.16)

as before.
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F.3 Boundary Conditions in the Continuous Form

If we wish to make a gauge transformation in

i

∫

c

dtψ̄[i∂t − ξ − iφ]ψ (F.17)

we need to satisfy the anti-periodic boundary conditions of the fermionic fields which

are an integral part of this representation. Let ψ → ψeiθ(t) and ψ̄ → ψ̄e−iθ(t). The

anti-periodic boundary conditions enforce the condition θ(t0 − iβ) − θ(t0) = 2πn. Now,

for

∂tθ = φ and i∂tg(t, t
′) = δ(t− t′) (F.18)

θ(t) =

∫

c

dt′g(t, t′)φ(t′) (F.19)

to satisfy the boundary conditions, we need ig(t, t′) to obey bosonic periodic boundary

conditions on the contour. For a case where these conditions can be satisfied, the field φ

can be gauged out of the action entirely, this is equivalent to θ′ = 0 for the discrete case.

For our problem this is not possible, as the solution to i∂tg(t, t
′) = δ(t − t′) is a

step function (plus a constant) defined on the contour. No step function obeys periodic

boundary conditions and hence no solution exists. However, following the transformation

made by Kamenev and Gefen[24], we can perform the following

ψ → ψe
∫ t dt′[φ(t′)−iTφ0] and ψ̄ → ψ̄e

∫ t dt′[φ(t′)−iTφ0] (F.20)

which will gauge out all but the “zero-mode” of the field φ, φ0 =
∫
c
dtφ. This transfor-

mation obeys the boundary conditions of ψ. In the same way as for the discrete case we

then have

Z =

∫
Dψei

∫
c dtψ̄[i∂t−ξ+Tφ0]ψ. (F.21)

Note that from the form of equation(F.13) it is clear we can not separate out the zero-mode

of the field in any trivial way.
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Appendix G

THE LINDHARD FUNCTION

We can define the Lindhard function in Keldysh as

Πkk′(x− x′) = 2iγ̃kj′i′Gi′i(x− x′)Gjj′(x
′ − x)γk

′
ij . (G.1)

It is the free particle “bubble” or polarization operator. We shall refrain from referring to

it as the polarization operator and call it the Lindhard function to avoid confusion with

the disordered case. From this we find

ΠR(ω,q) =
i

2

∫
ddp

(2π)d

∫
dε

2π

{
GR(P )GA(P +Q)[h(ε) − h(ε+ ω)]

+GR(P )GR(P +Q)h(ε+ ω) −GA(P )GA(P +Q)h(ε)
}

(G.2)

ΠA(ω,q) = [ΠR(ω,q)]∗ (G.3)

Π21(ω,q) = 0 (G.4)

ΠK(ω,q) =
i

2

∫
ddp

(2π)d

∫
dε

2π
[h(ε)h(ε+ ω) − 1](GR

ε (p) −GA
ε (p))

×(GR(Q+ P ) −GA(Q+ P ))

= coth

(
ω

2T

)[
ΠR(q, ω) − ΠA(q, ω)

]
. (G.5)

For low enough temperatures h(x) ≈ sgn(x) and the frequency integration can be trivially

dealt with. For the last two terms in equation (G.2) we are only interested in the lowest

order in ω and q. Using the fact that hω = 1 − 2fω, where f is the Fermi function, we

can write

−2i

∫
d3p

(2π)3

∫ 0

−∞

dε

2π
[(GR(p, ε))2 − (GA(p, ε))2] =

i

π

∫
d3p

(2π)3
[GR(p, ε) −GA(p, ε)]|0−∞.(G.6)
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After momentum integration we are left with −2ν0. The first terms in equation (G.2)

have to be dealt with slightly more carefully. After linearizing ξ

ΠR(ω,q) = −2ν0 − iν0

∫
dξ

∫ 1

−1

dΩ

∫ 0

−ω

dε

2π

1

ε− ξ + iδ

1

ε+ ω − ξ − vF qΩ − iδ
. (G.7)

The frequency integral is simply performed after rescaling ξ. This integral can then also

be done leaving us

ΠR(ω,q) = −2ν0 − ν0ω

∫ 1

−1

dΩ
1

ω − vF qΩ − 2iδ

= −2ν0 +
ν0ω

vF q
ln

[
1 − ω/vF q + iδ

−1 − ω/vF q − iδ

]
. (G.8)

In the limit |ω| ≪ vF q we find

ΠR(ω,q) ≈ −2ν0

[
1 − iπω

2vF q
− 1

3

q2

4p2
F

]
. (G.9)

The q2 term originates from higher order terms. For a full calculation see Mahan p395[70].

The Lindhard function is defined in the Matsubara representation as

χ0(q, ωn) = −T
∑

k,ǫm

G(k, ǫm)G(k + q, ωn + ǫm). (G.10)

ǫm are the fermionic, and ωn the bosonic, Matsubara frequencies. Using an appropriate

contour

∮

c

d(iε)f(iε)g(iε) = 2πiT
∑

εn=
(2n+1)πT

g(iε), where (G.11)

f(iε) =
1

eiβε + 1
. (G.12)

Hence we can rewrite

χ0(q, iωn) =
1

2πi

∑

k

∮

c

dεf(ε)
1

ε− ξk

1

ε+ iω − ξk+q

. (G.13)

We have introduced ε = iǫ and ω = iω. We can now deform the contour so the part on
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the negative axis cancels and the part on the positive real axis encircles the two poles.

Hence

χ0(q, ω) = −
∑

k

[
f(ξk)

ξk + ω − ξk+q

+
f(ξk+q − ω)

ξk+q − ξk − ω

]
(G.14)

=
∑

k

fk+q

2
− fk−q

2

ω − k.q
m

. (G.15)

This can be evaluated exactly but we are interested only in its form for ω ≪ vF q and

q ≪ kF . At zero temperature and in three dimensions we find (similarly to the Keldysh

case)

χ0(q, ωn) ≈ ν0

[
1 − 1

3

(
q

2pF

)2

− π

2

( |ωn|
qvF

)]
. (G.16)
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